Report on MSR 2005: International Workshop on Mining Software
Repositories

Ahmed E. Hassan and Richard C. Holt
Software Architecture Group (SWAG)

School of Computer Science
University of Waterloo
Waterloo, Canada

Stephan Diehl
Computer Science
Catholic University Eichstatt
Eichstatt, Germany
diehl@acm.org

{aeehassa, holt}@plg.uwaterloo.ca

Abstract

A one-day workshop on the topic of mining software repos-
itories was held at ICSE 2005 in St. Louis, Missouri. Re-
searchers and practitioners in this field try to transform static
record keeping software repositories to active ones. These
repositories enable researchers to gain empirically based un-
derstanding of software development, while software practi-
tioners use them to predict and plan various aspects of their
project.

After the surprisingly high number of submissions and at-
tendance of the first iteration of the MSR workshop in 2004,
it turned out that MSR 2005 even attracted more people.
We finally had registered participants for the workshop.
Due to the high quality of submitted papers, we decided to
squeeze 22 papers into one day by having 11 of the papers be
presented as Lightning talks — an euphemism for 5 minutes
presentations. There was a very vivid combined discussions
and demo session after these talks. When asking the audi-
ence at the end of the workshop, they indicated that they
actually liked the Lightning talks session.

This report includes an overview of the presentations made
during these sessions and a summary of the issues raised
throughout the workshop.

Introduction

Software repositories such as source control systems, archived
communications between project personnel, and defect track-
ing systems are used to help manage the progress of software
projects. Software practitioners and researchers are begin-
ning to recognize the potential benefit of mining this infor-
mation to support the maintenance of software systems, im-
prove software design/reuse, and empirically validate novel
ideas and techniques. Research is now proceeding to un-
cover the ways in which mining these repositories can help
to understand software development, to support predictions
about software development, and to plan various aspects of
software projects.

Scope and Topics of Interest

We sought position papers that address issues along the gen-
eral themes, including but not limited to the following:

e Approaches to study the quality of the mined data along
with guidelines to ensure the quality of the recovered
data

e Proposals for exchange formats, meta-models, and in-
frastructure tools to facilitate the sharing of extracted
data and to encourage reuse and repeatability

e Models for social and development processes that occur
in large software development projects

e Search techniques to assist developers in finding suitable
components for reuse

e Techniques to model reliability and defect occurrences

e Analysis of change patterns to assist in future develop-
ment

e Case studies on extracting data from repositories of
large long lived projects

e Suggestions for benchmarks, consisting of large software
repositories, to be shared among the community

Workshop Format

We received 38 papers from 14 countries. Papers were re-
viewed by the workshop’s program committee in terms of
their relevance to the aims of the workshop and their techni-
cal content. Accepted papers were posted on the workshop’s
web site prior to the workshop at:

http://msr.uwaterloo.ca

The workshop program was broken into five sessions: 4
with regular talks and one combined lightning talks and
demo session.

Regular talks were 15 minutes with one clarification ques-
tion. At the end of each session we had an open discussion
of all papers in that session. In contrast the lightning talks
were only 5 minutes long with no clarification questions. The
lightning talks were followed by a one hour walkaround de-
mos and discussion session.



Workshop Sessions

Session 1: Evolution and Change Patterns

The papers in this session investigated how changes occur
in evolving software systems and how to deal with the huge
amounts of data. Neamtiu et al. used abstract syntax trees
to identify changes and found that change increases with
depth. Williams et al. recovered system specific function us-
age patterns from the change history. In a case study Fischer
et al. looked at the operating system BSD and its offspring
to see how the evolution of product families differs from that
of single programs. Finally, by looking at the evolution of
code clones Kim and Notkin characterized different kinds of
clones and found that there are actually good clones.

Session 2: Defect Analysis

In general defect analysis is concerned where bugs come from
and where they go and how well we can predict them. Sliw-
erski and Zimmermann tried to identify changes that induce
later fixes, i.e. a change to correct a previous buggy change.
In particular they found, that such changes more frequently
occur on Fridays. Gorg and Weiflgerber developed a method
to automatically detect incomplete refactorings. Some of the
incomplete refactorings that they found lead to compilable
programs, but do not preserve the semantics.

Session 3: Education

While most of the other papers were looking at archives of
medium to large open source programs, the papers in this
session applied mining to student programs to allow teach-
ers to shadow students’ progress. Spacco et al. investigated
how warnings of different static analyzes predict exceptions
raised when testing the program. Mierle et al. extracted var-
ious quantitative measures from 200 CVS archives of student
projects and tried to relate these with grades. Surprisingly,
no predictors stronger than simple lines-of-code were found.

Session 4: Lightning Talks

The talks in this session were divided into four themes:

4a) Text Mining Ohba and Gondow suggested to mine
for concept keywords in identifiers to relate bug reports and
source code. In a case study Ying et al. found different
kinds of Eclipse comments that start with TODO and argued
that these and other source code comments provide impor-
tant information: ”Someone left a note for you in the code”.
Hayes et al. undertook a pilot study to examine the impact
of analyst decisions on the final outcome of the text mining
process.

4b Software Changes and Evolution Kim et al. de-
veloped a taxonomy of function signature change kinds and

analyzed 8 open source software systems to see how often
each of these change kinds occurred.

Ratzinger et al. identified two bad change smells, i.e. bad
practices of how to change code, and showed in a case study
that these can be used to find bad smells in the source code.

In their case study Antoniol et al. apply two techniques
from signal processing, namely Linear Predictive Coding and
Cepstral analysis, to identify files whose sizes similarly evolve
over time.

4c) Process and Collaboration VanHilst et al. ar-
gue that mining software repositories provides useful process
metrics without adding overhead to the process ifself.

Huang and Liu applied social network analysis to divide
modules into conceptual kernel and non-kernel modules, as
well as developers into core and none-core teams.

Huang and Liu received the Lightning award for the best
presentation in this session.

4d) Taxonomies and Formal Representations Two
different taxonomies were proposed: Kagdi et al. proposed
a taxonomy based on technical aspects, e.g. the kinds and
granularity of mining, whereas German et al. also considered
the context, i.e. who applies the mining and why is it used.
Hindle and German designed a query language to extract
information from software repositories. Their language is
based on a formal model of repositories consisting of four
entities: authors, modification request, revisions, and files.

Session 5: Integration and Collaboration

Robles and Gonzélez-Barahona combined various sources of
data to map the different identities used by a developer in
one or more open source projects to a single person.

Ohira et al. developed a graph-based tool to analyze
and visualize the relationship among projects and develop-
ers at SourceForge. They found that about 66 percent of all
projects had only one developer.

Conklin et al. reported about a repository for researchers
to store and share meta-data (developer names, platforms,
licence types, etc. ) extracted from general repositories like
SourceForge, GNU Savannah and the like.

1 Conclusions

Tools and approaches were presented that help to identify
potential bugs, who are the core-team members of a project,
or how to reuse a specific part of program code. The tech-
niques applied ranged from classical data mining to signal
processing. In the discussions the question of what are the
underlying heuristics and are they valid, was raised several
times. Also privacy issues were discussed a lot: although
the archives are publicly available, should we make our min-
ing results also publicly available as they often provide con-
densed information about individual developers.



By looking at the data stored in software archives re-
searchers found that there are good code clones, that stu-
dents who put spaces after commas get better grades and
that programmers should not work on Fridays. As more of
these tools become available, they will enable us to find out
whether these findings are true for our own projects or stu-
dents.

Finally, there are plans to turn MSR into a two days work-
shop and include a posters session and a challenge task to
enable comparison of the various approaches.

MSR 2005

*Mining Software Repositories




