

MSR 2006 Organization

General Chairs: Stephan Diehl (University Trier, Germany)
Harald Gall (University of Zurich, Switzerland)
Ahmed E. Hassan (Research in Motion RIM, Canada)

MSR Challenge Chair: Martin Pinzger (University of Zurich, Switzerland)

Program Committee: Premkumar T. Devanbu (University of California, Davis, USA)
Daniel German (University of Victoria, Canada)
Mike Godfrey (University of Waterloo, Canada)
Ric Holt (University of Waterloo, Canada)
Shih-Kun Huang (National Chiao Tung University, Taiwan)
Jane Huffman Hayes (University of Kentucky, USA)
Katsuro Inoue (Osaka University, Japan)
Michele Lanza (University Lugano, Switzerland)
Tim Lethbridge (Ottawa University, Canada)
Jonathan Maletic (Kent State University, USA)
Ken-ichi Matsumoto (NAIST, Japan)
Audris Mockus (Avaya Labs, USA)
Leon Moonen (Delft University of Technology, The Netherlands)
Thomas J. Ostrand (AT&T Labs, USA)
Dewayne Perry (University of Texas, USA)
Jelber Sayyad Shirabad (Ottawa University, Canada)
Alexandru Telea (Eindhoven University of Technology, The Netherlands)
Kenny Wong (University of Alberta, Canada)
Annie Ying (IBM Research, USA)
Thomas Zimmermann (Saarland University, Germany)

External Reviewers: Marco D’Ambros, Cathal Boogerd, Michael L. Collard,
Natalia Dragan, Huzefa Kagdi, Mircea Lungu, Masao Ohira,
Romain Robbes, Andrew Sutton, Peter Weißgerber,
Jingwei Wu, Shehnaaz Yusuf, Liming Zhao

Introduction to MSR 2006

Stephan Diehl
FB IV – Informatik
Universität Trier
Trier, Germany

diehl@acm.org

Harald Gall
Martin Pinzger

Department of Informatics
University of Zürich
Zürich, Switzerland

{gall,pinzger}@ifi.unizh.ch

Ahmed E. Hassan
Performance Engineering
Research In Motion (RIM)

Waterloo, Canada

ahmed@alumni.uwaterloo.ca

Categories and Subject Descriptors
D.2 [Software Engineering]: Miscellaneous

General Terms
Algorithms, Management, Measurement

ABSTRACT
Software repositories such as source control systems, defect
tracking systems, or archived communications between pro-
ject personnel are used to help manage the progress of soft-
ware projects. Software practitioners and researchers are
beginning to recognize the potential benefit of mining this
information to support the maintenance of software sys-
tems, improve software design/reuse, and empirically vali-
date novel ideas and techniques. Research is now proceeding
to uncover the ways in which mining these repositories can
help to understand software development, to support pre-
dictions about software development, and to plan various
aspects of software projects.

Following the success of the first two iterations of the MSR
workshop in 2004 and 2005, MSR 2006 attracted even more
submissions: We received 45 papers from 15 different coun-
tries. The international program committee accepted 16 full
and 12 short papers for presentation at the workshop and
inclusion in the proceedings. We are grateful for the excel-
lent and professional review job done by the reviewers on
such a tight schedule.

1. GOAL AND TOPICS
The goal of this two-day workshop is to establish a com-

munity of researchers and practitioners who are working
to recover and use the data stored in software repositories
for further understanding of software development practices.
We expect the presentations and discussions in this work-
shop to continue on a number of general themes and chal-

Copyright is held by the author/owner.
MSR’06, May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

lenges, from the previous MSR workshops held at ICSE 2004
and 2005, a recent TSE special issue on the MSR topic, and
the Dagstuhl-Seminar on Multi-Version Program Analysis
held in Summer 2005. The workshop covers themes and
topics such as:

• Engineering tasks related to the infrastructure and
tools needed to recover useful data from repositories

• Methods of integrating mined data from various data
sources

• Development and validation of approaches to visualize
and present such data

• Use of recovered history for system understanding and
analysis of change patterns

• Models of defects and software reliability using data
from such repositories

• Uncovering of the social processes and interaction be-
tween the development community

• Discovery of techniques to facilitate software reuse

As the field of mining software repositories has become more
mature, we expect MSR 2006 to be a forum for exploratory
work as well as continuing work. In 2006 we want to fos-
ter systematic comparisons of different approaches in our
field. To this end, MSR 2006 includes a challenge session in
addition to the demo session.

2. MSR 2006 CHALLENGE
The MSR Mining Challenge brings together researchers

and practitioners who are interested in applying, compar-
ing, and challenging their mining tools and approaches on
software repositories. The this year’s challenge covers the
two well known open source software projects PostgreSQL
and ArgoUML. 12 mining reports address the development
process, team structure, change coupling, bug resolution,
and cross-cutting concerns. 4 reports concentrated on ana-
lyzing ArgoUML, 5 on PostgreSQL, and 3 on analyzing both
projects. The results of all 12 reports present valuable in-
sights into both open source projects; for instance, did you
know that the main contributors to PostgreSQL comprise
only two people?

The reports and the program of the MSR Mining Chal-
lenge are the results of hard work. First of all, we would like
to thank the authors of submitted reports. Many thanks
goes to the open source community and in particular to the

1

ArgoUML and PostgreSQL project teams for sharing their
project data. They enable us to develop, compare, and chal-
lenge our mining approaches and tools.

We further would like to thank Beat Fluri, Patrick Knab,
and Sandro Boccuzzo for helping with the reviews, and Mar-
tin Pinzger, Harald Gall, Michele Lanza, and Marco D’Ambros
for organizing the MSR challenge. We are looking forward
to the participation in the final round of the MSR Mining
Challenge to see the best mining tools.

For more information on MSR and the MSR Challenge we
refer to http://msr.uwaterloo.ca/.

2

Mining Large Software Compilations over Time:
Another Perspective of Software Evolution∗

Gregorio Robles, Jesus M. Gonzalez-Barahona
Universidad Rey Juan Carlos
{grex,jgb}@gsyc.escet.urjc.es

Martin Michlmayr
University of Cambridge

martin@michlmayr.org

Juan Jose Amor
Universidad Rey Juan Carlos

jjamor@gsyc.escet.urjc.es

ABSTRACT
With the success of libre (free, open source) software, a new
type of software compilation has become increasingly com-
mon. Such compilations, often referred to as ‘distributions’,
group hundreds, if not thousands, of software applications
and libraries written by independent parties into an inte-
grated system. Software compilations raise a number of
questions that have not been targeted so far by software
evolution, which usually focuses on the evolution of sin-
gle applications. Undoubtedly, the challenges that software
compilations face differ from those found in single software
applications. Nevertheless, it can be assumed that both, the
evolution of applications and that of software compilations,
have similarities and dependencies.

In this sense, we identify a dichotomy, common to that
in economics, of software evolution in the small (micro-
evolution) and in the large (macro-evolution). The goal
of this paper is to study the evolution of a large software
compilation, mining the publicly available repository of a
well-known Linux distribution, Debian. We will therefore
investigate changes related to hundreds of millions of lines
of code over seven years. The aspects that will be covered
in this paper are size (in terms of number of packages and
of number of lines of code), use of programming languages,
maintenance of packages and file sizes.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Distribution, Mainte-
nance, and Enhancement

∗The work of Gregorio Robles, Jesus M. Gonzalez-Barahona
and Juan Jose Amor has been funded in part by the Euro-
pean Commission under the CALIBRE CA, IST program,
contract number 004337. The work of Martin Michlmayr
has been funded in part by Google, Intel and the EPSRC.
We would also like to thank the anonymous reviewers for
their extensive comments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

General Terms
Measurement, languages

Keywords
Mining software repositories, large software collections, soft-
ware evolution, software integrators

1. INTRODUCTION
Large systems based on libre software1 are developed in

a manner that is quite different to traditional systems. In
traditional large systems, such as operating systems, most
work is done in-house, with only few pieces licensed from
other sources and little work contracted to other companies.
Such work is also performed in close cooperation with the
organization and under tightly defined requirements. Libre
software, on the other hand, is typically written by small,
independent teams of volunteers, sometimes collaborating
with paid staff from one or more companies. While various
projects interact with each other, in particular where depen-
dencies between the software exist, there is no central coor-
dination between the individual projects. The main task
of vendors (i.e. distributions) of libre operating systems is
therefore not to write software but to group existing soft-
ware, taken from several sources, together and to make that
collection easy to install, configure and administer.

Since users of libre software have no incentive to download
software from hundreds of sites and installing them individ-
ually, distributions play an important role by providing an
integrated system that is easy to install. Unsurprisingly, a
number of companies have seen this as a business opportu-
nity and offer such distributions among with related services,
such as support. There are also a number of community
projects which operate on a non-profit basis like other libre
software projects. Given their open way of collaboration,
these are a good target for in-depth study of extremely large
software compilations. While some commercial entities have
recently started their own community projects in addition
to their enterprise offerings, most notably Fedora (Red Hat)
and OpenSUSE (Novell), we will take Debian as the source

1Through this paper we will use the term “libre software”
to refer to any code that conforms either to the definition of
“free software” (according to the Free Software Foundation)
or “open source software” (according to the Open Source
Initiative).

3

of data for this study since it is one of the most accessible
and best established projects.

Debian is a community effort that has provided a soft-
ware distribution based on the Linux kernel for well over
10 years. The work of the members of the Debian project
is similar to that carried out in other distributions: soft-
ware integration. Unlike many other distributions, Debian
is mostly composed of volunteers who are spread all around
the world. As a side-effect of this, all development infras-
tructure, including mailing lists, bug tracking and of course
the source code itself, is publicly available. In addition to
integrating and maintaining software packages, members of
the Debian project are in charge of the maintenance of a
number of services, such as a web site, user support, etc. In
the following, we will mostly focus on the work carried out
in their role as integrators of software – work that has had
tremendous success, given that Debian is the largest distri-
bution of all in terms of number of software packages [1].

2. RELATED RESEARCH AND GOALS
Software evolution has been a matter of study for more

than thirty years now [5, 7]. So far, the scope of software
evolution analyses has always been that of single applica-
tions. Example case studies are the “classical” analysis of
the OS/360 operating system [5], and, more recently, many
of studies on libre software systems. Such is the case for
the Linux kernel [3], or other well-known libre software ap-
plications, including Apache and GCC [11]. Noteworthy is
the proposal of studying the evolution of applications at the
subsystem level [2], as this introduces the issue of granu-
larity. Nonetheless, our approach considers as system the
whole software compilation and as subsystem the hundreds
of applications and libraries that are usually matter of soft-
ware evolution studies.

However, the authors have not found a study on the evolu-
tion of a system integrating many independent software ap-
plications. Actually, software compilations have rarely been
studied in software engineering. This is probably due to the
intrinsic difficulties that software companies find when inte-
grating large amounts of software programs built by several
vendors. There are a number of reasons for this, both legal
and technical. It seems that even if one of the most promis-
ing steps of software engineering has been to create reusable
components (or modules), in a similar way as bricks and
mortar, little attention has been put on how the integration
of these components evolve. A promising path has been
the study of integration of COTS from a software evolution
perspective [6].

As noted above, the public availability of source code of
libre software programs and the possibility of freely redis-
tributing this software allow to have an ample number of
software distributions. Both characteristics also enable the
investigation of distributions. In this sense, there have been
already some radiographies of some distributions, mainly of
the well-known Red Hat and Debian distributions. These
studies have pointed out the packages they contain, the size
of the packages and of the whole distribution, and some
statistics on the programming languages, among other is-
sues [14, 4, 1].

This paper goes a step beyond the single-version analyses
of software distributions: our goal is to study the evolution
of software compilations. We therefore consider data from
several points in time. However, it should be noted that the

goals of this study differ slightly from those usually consid-
ered as common for software evolution. In part this is be-
cause a different type of work has to be accomplished while
creating software compilations than during software devel-
opment. The work to be done for a software compilation
is mainly integration of software rather than development,
although the latter is not excluded at all (for instance, for
the development of an installer or other software administra-
tion tasks that distributions may include). Needless to say,
there are some aspects that are common to traditional soft-
ware evolution analyses, such as how the size of the software
evolves.

Putting a software distribution together is not only in-
tegration work, however. Maintenance also has to be per-
formed, but not so much in the classical way as defined by
Swanson (corrective, adaptive and perfective maintenance
activities) [12]. Maintenance in software compilations fo-
cuses on the integration of new versions of software that has
been released. In other words, a package maintainer will not
necessarily submit patches that correct errors; but they will
update the package whenever new versions are published by
the developers of the application or when changes in the dis-
tribution, such as library transitions or toolchain updates,
occur. This raises interesting questions in our longitudinal
analysis. For instance, we will analyze packages that are
kept and that get lost (removed) over time, as the composi-
tion of the software compilation may vary. We will also look
at packages whose version has not changed, as we will take
this as an indication of unmaintained packages.

As software compilations are composed of a large variety
of software applications for different purposes and from dif-
ferent backgrounds, we may find a larger heterogeneity than
when looking at specific software applications. This is the
case for instance in the use of programming languages: a
particular software application, for example the Linux ker-
nel [3, 10], is usually implemented primarily in one program-
ming language, with only minor portions in other languages
(such as glue code or the build system). This means that
studying compilations as large as the one we have selected
as our case study can be considered as a proxy of libre soft-
ware in general – a macroscopic view of the libre software
landscape. We are in this sense performing a holistic study
of libre software and analyze how it is in the large, drawing
some conclusions about the phenomenon itself.

3. METHODOLOGY
The methodology that we have used for the analysis of

the stable versions of Debian is as follows: first, we have re-
trieved files which contain information about the packages
that are distributed in a given Debian distribution. Distri-
butions are organized internally in packages where packages
correspond to applications or libraries. Debian developers
commonly try to modularize packages to the maximum, for
example splitting documentation into a separate packages if
it is very large. Since 2.0, the Debian repository contains a
Sources.gz file for each release, listing information about ev-
ery source package. For each package, it contains the name
and version, list of binary packages built from it, name and e-
mail address of the maintainer, and some other information
that is not relevant for this study. In some cases, packages
are not maintained by individual volunteers, but by teams.

As an example, an excerpt of the entry for the Mozilla

4

source package in Debian 2.2 has been included below2. It
can be seen how it corresponds to version M18-3, provides
four binary packages, and is maintained by Frank Belew.

[...]
Package: mozilla
Binary: mozilla, mozilla-dev, libnspr4, libnspr4-dev
Version: M18-3
Priority: optional
Section: web
Maintainer: Frank Belew (Myth) <frb@debian.org>
Architecture: any
Directory: dists/potato/main/source/web
Files:

57ee230[...]c66908a 719 mozilla_M18-3.dsc
5329346[...]bad03c8 28642415 mozilla_M18.orig.tar.gz
3adf83d[...]ca20372 18277 mozilla_M18-3.diff.gz

[...]

The Sources.gz files are parsed and the data they contain
is stored into a database. Then, each package is retrieved to
a local machine, the number of source lines of code (SLOC)
is counted and the programming languages in which the code
is written are recognized. The counting is made by means of
SLOCCount3, a tool written by David Wheeler that gives
the number of physical source lines of code of a software
program. SLOCCount takes as input a directory where the
sources are stored, identifies (by a series of heuristics) the
files that contain source code, recognizes for each of them
(also by means of heuristics) the programming language, and
finally counts the number of source lines of code they con-
tain. SLOCs are parsed differently for different languages,
which forces the identification of programming languages.

SLOCCount also identifies identical files (by using MD5
hashes), and includes heuristics to detect (and avoid count-
ing) automatically generated code. These mechanisms are
helpful when analyzing the code, but have some deficiencies.
Finding almost identical files using such hashes is not very
effective. In the second case, heuristics only take care of
well-known and/or common cases, but do not detect all of
them, or others that may appear in future. Nevertheless,
SLOCCount is a proven tool and it has has been used on
studies on Red Hat [14] and on Debian [4].

The results of the SLOCCount analysis are transformed
afterward into other formats, including both relational and
XML data formats. Hence, with a simple web interface any-
one can have access to raw data and more elaborated visu-
alization forms that facilitate a first analysis (graphs, maps,
among others). Many of the results carried out for this study
are offered in a web site4.

4. RESULTS AND OBSERVATIONS
In the following subsections we are going to present and

discuss the results obtained from applying our methodology
to several Debian releases.

4.1 Observations on the size of Debian
At the time of publication, the latest stable release of De-

bian is version 3.1, also known under the codename sarge.

2The original Sources.gz file where this entry comes from
can be found at http://www.debian.org/mirror/list.
3http://www.dwheeler.com/sloccount/
4http://libresoft.dat.escet.urjc.es/debian-counting/

The testing version has been codenamed etch and will be-
come the next stable Debian version some time in the future.
Finally, the one that is in development is called sid. In the
past, sarge also passed through this testing phase. What
we are going to consider in this work are the stable versions
of Debian since version 2.0, published in 1998. Thus, we
will consider Debian 2.0 (hamm), Debian 2.1 (slink), De-
bian 2.2 (potato), Debian 3.0 (woody) and, finally, Debian
3.1 (sarge). The codenames of the versions in Debian corre-
spond to the main characters of the animated cartoon film
Toy Story.

0

50

100

150

200

JAN−98 JAN−99 JAN−00 JAN−01 JAN−02 JAN−03 JAN−04 JAN−05 JAN−06

0

2000

4000

6000

8000

10000

JAN−98 JAN−99 JAN−00 JAN−01 JAN−02 JAN−03 JAN−04 JAN−05 JAN−06

Figure 1: Size in MSLOC and number of packages
for the versions in study. Top: MSLOC for each ver-

sion. Bottom: Number of packages for each version. In

both cases, the studied versions are spaced in time along

the X axis according to their release date.

In figure 1 the number of MSLOC and source packages for
the considered stable versions of Debian can be found. De-
bian 2.0, released July 1998, includes 1,096 source packages
that have more than 25 MSLOC. The following stable ver-
sion of Debian, version 2.1 (published around nine months
later), contains more than 37 MSLOC in 1,551 source pack-
ages. Debian 2.2 (released 15 months after Debian 2.1) sums
up around 59 MSLOC in 2,611 packages, whereas the next
stable version, Debian 3.0 (published two years after Debian
2.2), groups 4,579 packages of source code with almost 105
MSLOC. Finally, almost three years later, Debian 3.1 has
been released, with 8,560 source packages and more than
216 MSLOC.

Version Release Source pkgs Size Mean pkg size
2.0 Jul 1998 1,096 25 23,050
2.1 Mar 1999 1,551 37 23,910
2.2 Aug 2000 2,611 59 22,650
3.0 Jul 2002 4,579 105 22,860
3.1 Jun 2005 8,560 216 25,212

Table 1: Size of the Debian distributions under
study. Size is given in MSLOC, while the mean package

size is in SLOC.

5

Although the number of points is not sufficient to make an
accurate model, we can infer from the current data that the
Debian distribution doubles its size (in terms of source lines
of code and of number of packages) around every two years,
although this growth has been much more significant at the
beginnings (from July 1998 to August 2000 we observed
an increase of 135%) than in later releases (between July
2002 and June 2005 the source code base has not achieved
a 100% increase even though 3 years have passed). Hence,
using time in the horizontal axis, we would have a smooth
growth of the software compilation as found by Turski [13].
On the other hand, if we considered only releases (which is
the methodology preferred by Lehman), the growth would
be super-linear basically because the time interval between
subsequent releases has been growing for most recent re-
leases.

4.2 Observations on the size of packages
The histograms in figure 2 display package sizes for Debian

2.0 and Debian 3.0 (measured in SLOC). It can be clearly
observed that large packages grow in size with time, while
at the same time more packages near the origin appear. It is
astonishing how many packages are very small packages (less
than thousand lines of code), small (less than ten thousand
lines) and medium-sized (between ten thousand and fifty
thousand lines of code).

A small number of large packages in size (over 100
KSLOC) exist and the size of these packages tends to in-
crease over time, as the sixth law of software evolution
states [8]. Nevertheless, it seems surprising that in spite of
the growth that Debian has undergone, the graph does not
show big variations. Still more interesting is the fact that
the mean size for the packages included in Debian is slightly
regular (around 23,000 SLOC for Debian 2.0, 2.1, 2.2, 3.0
and 3.1, see table 1). With the data available at the present
time it is difficult to give a solid explanation of this fact,
but we can suggest some possible hypotheses5. As packages
tend to grow in size and if no new packages are added to new
versions of Debian, a growth in the mean package size would
be expected. So it is the inclusion of new, small packages
that makes the mean size stay almost constant for around
seven years. Perhaps the ecosystem in Debian is so rich that
while many packages grow in size, smaller ones are included
causing that the average to stay approximately constant.

4.3 Observations on the maintenance of pack-
ages

Up to the moment, we have seen how Debian has been
growing in the last 7 years as far as the number of packages
and the number of SLOC is concerned. In the following
paragraphs, we will attend an opposite dimension: pack-
ages that have not changed. This has to be understood in
the sense that taking care of a software distribution requires
maintaining packages, i.e. among other activities including
new versions of the packages in the distribution. Packages
that maintain from one release to the other the same ver-
sion number may have been maintained actively, but usu-
ally even performing corrective maintenance implies releas-
ing new versions of the software. We can therefore assume

5One of the anonymous workshop reviewers pointed out that
this kind of distribution is common in human-created arti-
facts, and is often considered to be an indication of human
cognitive limitations.

that no changes have been performed if the version number
has not been changed.

It should be noted that Debian has a policy about version
numbers. In addition to the software version, the project
appends an own revision number. So, for example, a pack-
age with version number 1.2-3, means that it is the third
Debian revision (upload) of that package in its 1.2 version.
So, even if the original software is not maintained, the De-
bian versions may change because of library transitions (for
instance, compiler changes from GCC 3 to GCC 4). Thus,
some packages have Debian revision numbers up to 20 or
higher - simply because the original software is not devel-
oped anymore but Debian still maintains that package.

Figure 4.3 will help explaining how we are going to mea-
sure maintenance activity supposing that we have two dis-
tributions (given each one by a set of packages, in the figure
these are Debian 2.0 and Debian 3.1). The circle that gives
the set of packages for the Debian 3.1 version has a larger
radius as it contains many more packages than Debian 2.0
(the area of the circles could be considered as proportional
to their size in number of packages). Both sets may have
packages in common (the intersection between the two sets,
as it is the case for the kernel-source package). Other pack-
ages will only be included in one of them. If packages appear
only in the older Debian version, we say that it has been lost,
while packages that appear only in the newer one are new
(or added) packages. We can also identify a subset of those
packages that remain with the same version number (a sub-
set of the intersection between the two sets); those are the
packages that we will consider unmaintained.

Figure 3: Illustration of common packages between
Debian 2.0 and 3.1. Among these packages, we may
find a subset that has the same version number.

Tables 2 and 3 contain some statistics about common
packages in different stable versions. As explained above,
we assume that two versions have a package in common if
that package is included in both, independently of the ver-
sion number of the package. Each table displays in its sec-
ond column the number of packages that a version of Debian
has in common with the other versions (see column “Com
pkgs”). To facilitate the comparison in relative and abso-
lute terms, the same version of Debian that is compared is
included. Needless to say, Debian 2.0 will have in common
with itself 1,096 (all) source packages.

Out of the 1096 packages included in Debian 2.0 only
about 800 appear in the latest version of Debian (at time of

6

0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06

5

10
15
25
40
60
85

120
170
240
340
480
675

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

5
10
20
35
55
85

130
200
305
465
705

1070
1625
2465
3735

Figure 2: Histogram with the SLOC distribution for Debian packages. Left: Debian 2.0. Right: Debian 3.0

publication of this paper). This means that around 25% of
the packages have disappeared from Debian in seven years.
The number of packages of the 3.0 version that are still in-
cluded in 3.1 is 3,848 out of 4,578 which gives us a similar
percentage of lost packages.

If we consider those packages with version numbers that
have not varied, we have to identify packages included in
two different Debian versions that have the same package
version (see column “Com vers.”). Again, we add the own
Debian version being compared. Because of that, Debian 2.0
will have all of its packages (1,096) in common with itself.

The fact that Debian 3.1 includes 158 packages that have
not evolved since Debian 2.0 is very surprising, as 15% of the
source packages included in Debian 2.0 have stayed almost
with no alterations since they were introduced seven years
ago (or earlier). As expected, the number of packages with
versions in common increases for neighboring distributions.

4.4 Observations on the programming lan-
guages

Our methodology implies to identify the programming
language of source code files before counting the number
of SLOCs. Thanks to this, we are able to compute the sig-
nificance of the different programming languages in Debian.
The most used language in all Debian versions is C with
percentages that vary between 55% and 85% and with a
big advantage on its immediate pursuer, C++. It can be
observed, nevertheless, that the importance of C is dimin-
ishing gradually, whereas other programming languages are
growing at a steady rate.

For example, in table 4 the evolution of the most signif-
icant languages – those that surpass 1% of code in Debian
3.1 – is shown. Below the 1% mark we can find, in this or-
der: tcl, Ada, PHP, Pascal, ML, Objective C, YACC, C#,
Lex, Awk, Sed and Modula3.

There exist some programming languages that we could
consider as minor languages and that reach a high position
in the classification. This is because although being present
in a reduced number of packages, these are large in size.
That is the case of Ada, that sums up 430 KSLOC in three
packages (gnat, an Ada compiler, libgtkada, a binding to
the GTK library, and Asis, a system to manage sources in
Ada) of a total of 576 KSLOC that have been identified as
code written in Ada in Debian 3.0. A similar case is the one
for Lisp, that counts with more than 1.2 MSLOC only for
GNU Emacs and XEmacs of around 4 MSLOC in the whole
distribution.

The programming language distribution pie-charts display

a clear tendency in the decline in relative terms of C. Some-
thing similar seems to happen to Lisp, which was the third
most used language in Debian 2.0 and has become the fifth
in Debian 3.1 (in fact, in 3.1, the forth language is Perl), and
that foreseeably will continue backing down in the future.
In contrast, the part of the pie corresponding to C++, shell
and other programming languages grows.

Figure 5 provides the relative evolution of programming
languages which gives a new perspective of the growth for
the last five stable Debian versions. We therefore take the
Debian 2.0 version as reference and suppose that the pres-
ence of each language in it is 100% (normalized to 1) so that
growth for a programming language is shown relative to it-
self. The graph should be read as follows: for each line in
Debian 2.0 for a given language, the figure gives the number
of lines in subsequent Debian releases for that language.

Previous pies evidenced that C is backing down as far as
its relative importance is concerned. In this one we can ob-
serve that in absolute terms C has grown more than 300%
throughout the four versions (see figure 4 for a histogram
with absolute values). But we can see that scripting lan-
guages (shell, Python and Perl) have undergone an extraor-
dinary growth, all of them multiplying their presence by
factors superior to seven, accompanied by C++. Languages
that grow a smaller quantity are the traditional, compiled
ones (Fortran and Ada) and others (such as Lisp, a tradi-
tional language that does not require compilation). This can
give an idea of the importance that interpreted languages
have begun to have in the libre software world.

Figure 5 includes the most representative languages in De-
bian, but excludes Java and PHP, since the growth of these
two has been enormous, in part because their presence in
Debian 2.0 was testimonial, in part because their popularity
in the latest time is beyond doubt.

4.5 Observations on the file sizes
It should be remarked that some of the most important

programming languages have spectacular increases in their
use, but that their mean file sizes remain generally constant
(see table 5). Thus, for C the average length lies around
260 to 280 SLOC per file, whereas in C++ this value is
located in an interval going from 140 to 185. We can find
the exception to this rule in the shell language, that triples
its mean size. This may be because the shell language is very
singular: almost all the packages include something in shell
for their installation, configuration or as glue. It is probable
that this type of scripts get more complex and thus grow
over the years.

7

Version Com pkgs Com vers. SLOC com vers. Files com vers. SLOC com pkgs
Debian 2.0 1,096 1,096 25,267,766 110,587 25,267,766
Debian 2.1 1,066 666 11,518,285 11,5126 26,515,690
Debian 2.2 973 367 3,538,329 86,810 19,388,048
Debian 3.0 754 221 1,863,799 70,326 15,888,347
Debian 3.1 813 158 1,271,377 15,296 15,594,976

Table 2: Packages and versions in common for Debian 2.0

Version Com pkgs Com vers. SLOC com vers. Files com vers. SLOC com pkgs
Debian 2.0 813 158 1,271,377 15,296 15,594,976
Debian 2.1 1,124 231 2,306,969 27,543 23,630,211
Debian 2.2 1,946 508 4,992,308 60,525 36,584,110
Debian 3.0 3,848 1,567 16,042,810 211,299 78,451,818
Debian 3.1 8,560 8,560 215,812,764 931,834 215,812,764

Table 3: Packages and versions in common for Debian 3.1

2.0 % 2.0 2.1 % 2.1 2.2 % 2.2 3.0 % 3.0 3.1 % 3.1
C 19,371 76.7% 27,773 74.9% 40,878 69.1% 66.6 63.1% 120.5 55.8%

C++ 1,557 6.2% 2,809 7.6% 5,978 10.1% 13.1 12.4% 36.4 15.8%
Shell 645 2.6% 1,151 3.1% 2,712 4.6% 8.6 8.2% 20.4 9.4%
Perl 425 1.7% 774 2.1% 1,395 2.4% 3.2 3.0% 6.4 2.9%
Lisp 1,425 5.6% 1,892 5.1% 3,197 5.4% 4.1 3.9% 6.8 3.1%

Python 122 0.5% 211 0.6% 349 0.6% 1.5 1.4% 4.1 1.9%
Java 22 0.1% 58 0.2% 183 0.3% 0.5 0.5% 3.8 1.7%

Fortran 494 2.0% 735 2.0% 1,182 2.0% 1,939 1.8% 2.7 1.3%

Table 4: Top programming languages in Debian. For Debian 2.0, 2.1 and 2.2 the sizes are given in KSLOC,
for versions 3.0 and 3.1 in MSLOC.

Debian2.0 Debian2.1 Debian2.2 Debian3.0 Debian3.1

0

5e+07

1e+08

1.5e+08

2e+08

C

C++

Lisp

Shell

Figure 4: Evolution of the four most used languages
in Debian.

It is very peculiar to see how structured languages usu-
ally have larger average file lengths than object-oriented lan-
guages. Thus the files in C (or Yacc) usually have higher
sizes, in average, than those in C++. This makes us think
that modularity of programming languages is reflected in
the mean file size.

5. CONCLUSIONS AND FURTHER RE-
SEARCH

In this paper we have shown the results of a study on the
evolution of the stable versions of Debian from the year 1998

 0

 5

 10

 15

 20

 25

 30

Debian 3.1Debian 3.0Debian 2.2Debian 2.1Debian 2.0

R
el

at
iv

e
S

LO
C

 (
S

LO
C

 in
 D

eb
ia

n
2.

0
=

 1
)

C
C++

LISP
Shell

FORTRAN
Perl
Ada

Python

Figure 5: Relative growth of some programming lan-
guages in Debian.

onwards. We have traced and presented the evolution of the
size of its source code (measured in physical source lines of
code), of the number and size of the packages, and of the
use of the various programming languages.

Among the most important evidence we have found we can
highlight the drastic evolution rate of the distribution: sta-
ble versions double in size (measured by number of packages
or by lines of code) approximately every two years. This,
when combined with the huge size of the system (about 200
MSLOC and 8,000 packages in 2005) may pose significant

8

Lang. Deb. 2.0 Deb. 2.1 Deb. 2.2 Deb. 3.0 Deb. 3.1
C 262.88 268.42 268.64 283.33 276.36

C++ 142.50 158.62 169.22 184.22 186.65
Lisp 394.82 393.99 394.19 383.60 349.56
shell 98.65 116.06 163.66 288.75 338.25
Yacc 789.43 743.79 762.24 619.30 599.23
Mean 228.49 229.92 229.46 243.35 231.6

Table 5: Mean file size for some programming lan-
guages.

problems for the management of the future evolution of the
system, something that has probably influenced the delays
in the release process of the last stable versions.

A specific problem in this realm comes from the fact that
until now the mean size of packages has remained almost
constant, which means that the system has more and more
packages (growing linearly with the size of the system in
SLOCs). Since there is a certain level of complexity related
to the specifics of each package, which imposes a limit on
the number of packages per developer, this means that the
project would need to grow in terms of developers at the
same pace. However, such a growth is not easy, and causes
problems of its own, specially in the area of coordination.

With respect to the absolute figures, it can be noted that
Debian 3.1 is probably one of the largest coordinated soft-
ware collections in history, and almost for sure the largest
one in the domain of general-purpose software for desktops
and servers. This means that the human team maintaining
it, which has also the peculiarity of being completely formed
by volunteers, is exploring the limits of how to assemble and
coordinate such a huge quantity of software. Therefore, the
techniques and processes they employ to maintain a certain
level of quality, a reasonable speed of updating, and a release
process that delivers stable versions quite usable, are worth
studying, and can for sure be of use in other domains which
have to deal with large, complex collections of software.

As far as the programming languages are concerned, C
is the most used language, although it is gradually losing
importance. Scripting languages, C++ and Java are those
that seem to have a higher growth in the newer releases,
whereas the traditional compiled languages have even infe-
rior growth rates than C. These variations also imply that
the Debian team has to include developers with new skills
in programming languages in order to maintain the evolving
proportions. By looking at the trends in languages use with-
ing the distribution, the project could estimate how many
developers fluent in a given language it will need. In ad-
dition, this evolution of the different languages can also be
considered as an estimation of how libre software is evolving
in terms of languages used, although some of them are for
sure misrepresented (for instance, Java is underrepresented,
possibly because of licensing issues).

The evolution shown in this paper should also be put in
the context of the activity of the volunteers doing all the
packaging work. While some work has been done in this
area [9], more research needs to be performed before a link
can be established between the evolution of the skills and
size of the developer population, the complexity and size
of the distribution, the processes and activities performed
by the project, and the quality of the resulting product.
Only by understanding the relationships between all these

parameters can reasonable measures be proposed to improve
the quality of the software distribution, or shorten the re-
lease cycle without harming reliability and stability of the
releases.

All in all, the study of distributions such as Debian can be
of great interest not only for understanding their evolution,
but also to be used as good case studies which can help to
understand large, complex software systems which are more
and more common in many domains.

6. REFERENCES
[1] J. J. Amor, J. M. Gonzalez-Barahona, G. Robles, and

I. Herraiz. Measuring libre software using Debian 3.1
(Sarge) as a case study: preliminary results. Upgrade
Magazine, Aug. 2005.

[2] H. Gall, M. Jazayeri, R. Klosch, and G. Trausmuth.
Software evolution observations based on product
release history. In Proc Intl Conference on Software
Maintenance, pages 160-170, 1997.

[3] M. W. Godfrey and Q. Tu. Evolution in Open Source
software: A case study. In Proceedings of the
International Conference on Software Maintenance,
pages 131-142, San Jose, California, 2000.

[4] J. M. Gonzalez-Barahona, M. A. Ortuno Perez, P. de
las Heras, J. Centeno, and V. Matellan. Counting
potatoes: the size of Debian 2.2. Upgrade Magazine,
II(6):60-66, Dec. 2001.

[5] M. M. Lehman and L. A. Belady, editors. Program
evolution: Processes of software change. Academic
Press Professional, Inc., San Diego, CA, USA, 1985.

[6] M. M. Lehman and J. F. Ramil. Implications of laws
of software evolution on continuing successful use of
cots software. Technical report, Imperial College, 1998.

[7] M. M. Lehman and J. F. Ramil. Rules and tools for
software evolution planning and management. Annals
of Software Engineering, 11(1):15-44, 2001.

[8] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E.
Perry, and W. M. Turski. Metrics and laws of software
evolution - the nineties view. In METRICS’97:
Proceedings of the 4th International Symposium on
Software Metrics, page 20, nov 1997.

[9] M. Michlmayr and B. M. Hill. Quality and the
reliance on individuals in free software projects. In
Proceedings 3rd Workshop on Open Source Software
Engineering, pages 105-109, Portland, USA, 2003.

[10] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and
I. Herraiz. Evolution and growth in large libre
software projects. In Proceedings of the International
Workshop on Principles in Software Evolution, pages
165-174, Lisbon, Portugal, September 2005.

[11] G. Succi, J. W. Paulson, and A. Eberlein. Preliminary
results from an empirical study on the growth of open
source and commercial software products. In
EDSER-3 Workshop, Toronto, Canada, May 2001.

[12] E. B. Swanson. The dimensions of maintenance. In
Proceedings of the 2nd International conference on
Software Engineering, pages 492-497, 1976.

[13] W. M. Turski. Reference model for smooth growth of
software systems. IEEE Transactions on Software
Engineering, 22(8):599-600, 1996.

[14] D. A. Wheeler. More than a gigabuck: Estimating
GNU/Linux’s size. Technical report, June 2001.

9

Scenarios for Mining the Software Architecture Evolution
Yaojin Yang

Nokia Research Center
P.O. Box 407, FIN-00045

+358718008000

yaojin.yang@nokia.com

Claudio Riva
Nokia Research Center

P.O. Box 407, FIN-00045
+358718008000

claudio.riva@nokia.com

ABSTRACT
In this position paper, we introduce our latest activities on
architecture evolution analysis through software repository
mining. The traditional approaches for software repository mining
provide means for analyzing source-level information. However,
we believe that software repository mining can also provide
valuable results for analyzing the system evolution at the
architectural level.

There are two challenges for analyzing the architecture evolution.
The first one is to have in place a process for recovering the
architectural models of the various releases. Architecture
evolution is often visible only in the evolution of the
implementation and this complicates the monitoring process. The
second one is to have access to the past design models that were
created by the architects during the design phase. A practical
solutions for versioning the architectural models is not in use yet
and this complicates the possibility of accessing the past design
decisions.

Analyzing architecture evolution through software repository
mining represents the most promising choice. In order to conduct
the analysis through software repository mining, we introduce our
meta-model covering the design and implementation spaces.
Then, we define a set of scenarios that demonstrate the
architecturally significant analysis that we can conduct by mining
the software repository.

Categories and Subject Descriptors
D.2.11 Software Architectures, D.2.13 Reusable Software

General Terms: Documentation, Experimentation

Keywords: Architecture evolution, Mining software
repository, Architecture recovery

1. INTRODUCTION
The software architecture evolution typically happens on two
parallel tracks: the design space and the implementation space.
While the evolution on the design space concerns the intentions of
the designers, the evolution on the implementation space can have
deep implications at the architectural level. From our experience,
understanding the evolution at the implementation level can help

to understand the evolution at the architecture level where it is
harder to monitor and trace the changes. For this reason, it is not
easy to keep the architecture models up to date. Therefore,
providing support to deal with this issue is very important from
the perspective of architecture evolution.

We provide an example of architecture evolution triggered by the
implementation that is frequently happening in the lifecycle of
software platforms like the ones developed in Nokia. We monitor
and analyze such evolution through mining software repository.

We consider a binary component (like a DLL) that belongs to the
implementation space. If the source files associated with the
binary component have been modified, we say that the binary
component itself is modified and it is evolving. The evolution of
the binary component may have implications in the architecture
space, i.e. in the architecture design of the system. If the
modifications in the binary component affect the way the
component interacts with the environment (e.g. using a new
interface), we can say that also the logical component in the
design space has changed and the architecture of the system has
also evolved.

We highlight that there is not a direct link between the changes in
the implementation with the changes in the architecture. Only
some implementation-level changes have an effect on the
architecture and we call them architecturally significant. The
main focus of our work is to study the architecturally significant
changes for a software system.

This is our approach for monitoring the architecture evolution by
mining software repositories. First, for each release we build an
implementation and design combined architecture model
according to a defined meta-model by using our reverse
architecting environment ([2] and [6]) and import the models into
our software repository. Second, we compare the models’
implementation spaces between release 2 and its previous release
1 through mining the software repository. Third, if binary
component evolution is identified, we trace up to the design
spaces of both releases 1 and 2 and identify the parent logical
component of evolved binary component. Fourth, we compare the
topology of the graphs based on the parent logical component
between the models’ design spaces of release 1 and release 2. If
there are not identical, we claim that there is implementation
trigged evolution happening on the parent logical component.

In [3], Koschke and Simon propose an approach to map the
design and the implementation based on the same module
viewtype. The difference with our work of building an
implementation and design combined architecture model is that
we do not assume that the viewtypes of design space and
implementation space are the same. In fact, our design space is
presented in component and connector viewtype and our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

10

implementation is presented in module viewtype. That is, our
model is presented in a combined viewtype.

For supporting architecture evolution analysis through software
repository mining, we utilize our existing reverse architecting
environment [2] & [6]. The reverse architecting tool set offered
by the environment provides us a tool chain from source code
analysis till model abstraction for recovering architecture models.
Columbus [5] tool is deployed in the tool chain as source code
analyzer. MySQL database is integrated into the environment,
which is used as our software repository for storing architecture
models of different releases. The environment’s model validation
tool facilitates our comparison between architecture models of
different releases. The architecture evolution is identified through
the comparison.

2. META-MODEL OF ARCHITECTURE
MODELS

<<Design>>
Package

<<Design>>
Logical

component

<<Design>>
Interface

<<realize>>

<<use>>

<<Implementation>>
Binary component

<<Implementation>>
Header file

<<Implementation>>
Source file

<<Implemenatation>>
Method

<<declare>>

<<use>>

<<implement>>

1..* 0..*

0..*

1..* 1..*

1..*

0..*

0..*

1..* 0..*

0..*

<<include>>

Figure 1. Meta-model for the architecture models

We have developed a simplified meta-model of the architecture
that serves the purposes of studying the architectural evolution.
The meta-model captures the design and implementation aspects,
as shown in Figure 1. The meta-model provides a traceability
mechanism between the architecture design and the
implementation. This represents a key element for studying the
software architecture evolution.

We make a distinction between the design and implementation
space. In the design space, a package contains one or more logical
components and a set of interfaces. The logical components
implement the functionality of the system. They can realize or/and
depend on any number of interfaces.

In the implementation space, the binary component is the
aggregation of several source files. The source files include one or
more header files. The header files declare the methods that are
implemented in or used by a source file.

3. APPROACH FOR MODEL RECOVERY
In our architecture models, the instances of elements and relations
presented in the meta-model are mostly captured or abstracted
from implementation. However, instances of aggregation between
logical component and binary component and aggregation

between interface and header file are directly extracted from
design.
We use Columbus for capturing model elements and relations in
the implementation space. The initial resulting model conforms to
the FAMIX meta-model [1] (Table 1). Then, we filter information
that is not defined by the meta-model (Figure 1). Since, binary
component and aggregation between binary component and
source file are specified in specific project file, the Columbus has
been customized in order to extract such information and import it
into the implementation model.
In the design space, model elements of documented logical
component, interface and package, aggregation between package
and logical component, and aggregation between package and
interface are captured by parsing architectural logical view and
interface specification document.
In order to merge the implementation model and the design model
to form a complete architecture model defined by the meta-model
(Figure 1), aggregation between logical component and binary
component and aggregation between interface and header file are
the key relations to rely on. The aggregation between logical
component and binary component can be obtained through
parsing design tables and the aggregation between interface and
header file can be obtained through parsing interface specification
document. If certain binary component or header file doesn’t
belong to any aggregation, it is usually the case that new logical
component or interface is added into the design but is not
documented.
The dependency and realization between logical component and
interface are considered as key measurements for monitoring
implementation trigged architecture evolution. Therefore, they
have to be abstracted from implementation.

Table 1. The FAMIX meta-model

11

4. CHARACTERIZING THE EVOLUTION
OF THE SOFTWARE MODELS
During the evolution of the software system, both the design and
the implementation spaces are modified. The design space is
modified by the software designers according to the requirements
of the system. The implementation space is modified by the
programmers who are implementing new features or modifying
the existing code.

The implementation is driven by the design but not all the changes
in the implementation are reflected by the design (as we have
discussed in [2]). Moreover, the versioning of the design models
is not yet well understood and the practice shows that tracing the
modifications from one design to the next one is not an easy task.
As a result, the only reliable information about the evolution of
the system is mainly visible in the implementation space.

We need to link the evolution in the design space with the
evolution in the implementation.

We characterize the evolution of the system by only comparing
the topology of the software models.

4.1 The evolution of the implementation space
Changes in the implementation space are identified by changes in
the topology of the graphs that we extract with the source code
analyzers.

A build component is changed when one of the following items
has been modified between two different releases:

• The set of source files that belong to the build
component

• The set of use relations between a source file and a
method

• The set of implement relations between a source file and
a method

• The set of include relations between the source files in
the build component and the header file

A header file is changed when the method declarations have been
modified (e.g. when method declarations have been added,
removed or changed).

We note that we ignore those modifications that do not modify the
topology of the graphs.

4.2 The evolution of the design space
We directly link the evolution of the elements in the design space
with the modifications that happen in the implementation space.
We define the following rules:

1. One logical component is changed when at least one of
its binary components have been changed, removed or
new ones have been added.

2. One interface is changed when at least one of its header
files have been changed, removed or new ones have
been added. It is not possible to freeze the interfaces
but they can evolve in the same way like components.

3. One package is changed when (1) one containing
element (either a component or an interface) has
changed, (2) a new element has been added or (3) an
existing element has been removed.

5. SCENARIOS OF ARCHITECTURE
EVOLUTION ANALYSIS
We present common scenarios of architecture evolution analysis.
The scenarios are listed according to their impact on the overall
architecture (from high to low impact). In Table 2, we analyze the
relations between the types of architecture evolution and
scenarios.

Adding one new feature

One typical scenario is to add a new feature in the system. This
activity typically involves creating new interfaces, modifying
existing interfaces and introducing new logical or/and binary
components. Adding a new feature can have a large impact on the
overall architecture.

The modification of the existing interfaces may impact the
functionality of existing binary components. However, not all the
cases can be predicted at design time and only during the
implementation problems may arise. After the implantation, it is
important to monitor what are the effects of these changes on the
overall design.

The new logical or/and binary components may also create
unexpected dependencies that are discovered only during the
implementation. It is important to detect these architectural
changes.

Restructuring the design

Improving the overall design is a preventive maintenance activity
that can have large impacts on the system. The designers should
be able to monitor how these activities can affect the various
logical or/and binary components, how often they are happening
and if certain logical or/and binary components are often
modified.

Modifying one binary component

When one binary component is modified to extend its
functionality the changes may impact other binary components
or/and even logical components. It is important to control the
effects of the changes.

Studying the evolution of one logical component

Studies on the evolution of particular logical components are
typically conducted to assess their quality, stability and to identify
the weaknesses. By studying the evolution at the architectural
level we may be able to reveal unfavorable patterns of evolutions
like too frequent changes or changes with too big effects on the
rest of the system. The studies may lead to restructure the logical
component.

Monitoring the evolution of the interfaces

Interfaces cannot be frozen but they are evolving. In most cases,
new interfaces are added to provide access to new functions.
Ideally interface should be kept stable, but modifying interfaces is
sometimes required by the modification of implementation.
However, removing interface is not a common case.

12

Fixing a bug in the system

We expect that bug fixing is not causing big impacts at the
architectural level. Bug fixing should only be limited by
modifying the internal implementation of the binary components
but not their external dependencies. If there are architectural
modifications happening because of bug fixing, then there may be
fundamental problems in the implementation and the current
design should be revisited.

Correlating software metrics with the architectural evolution

Several software metrics are calculated by the Columbus tool. We
need to correlate the trends of the software metrics with the
changes in the architecture. This will enable us to monitor the
effect of certain architectural changes on the quality of the
software.

 Design trigged
evolution

Implementation
trigged evolution

Adding one new
feature

Happen Maybe happen

Restructuring the
design

Happen Maybe happen

Modifying one
binary component

Not happen Happen

Studying the
evolution of one

logical
component

Happen Maybe happen

Monitoring the
evolution of the

interfaces

Happen Not happen

Fixing a bug in
the system

Not happen Maybe happen

Correlating
software metrics

with the
architectural

evolution

Happen Happen

Table 2. Types of architecture evolution in the scenarios

6. CONCLUSIONS
In this paper, we presented our work of analyzing software
architecture evolution through mining software repository. Our
position is that the software repositories contain valuable
information for monitoring the architecture evolution but this
information is not ready available. In order to make it more
explicit, we need to isolate the architecturally significant changes
that happen in the implementation and have an impact on the
design space.

In the future, we will focus on providing concrete examples of
analysis of the evolution of very large software systems
(containing tens of millions of lines of code). One of our goal is to
define architecture evolution patterns, especially implementation
trigged evolution, to provide tool support for monitoring and
analyzing the evolution, and ultimately to refine our architecture
design so that the implementation evolution will have minimum
impact on the architecture level.

7. REFERENCES
[1] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 – the

FAMOOS information exchange model. Technical report,
University of Bern, 2001.

[2] C. Riva, P. Selonen, T. Systäa, and J. Xu. UML-based
reverse engineering and model analysis approaches for
software architecture maintenance. In Proc. of the The 20th
IEEE International Conference on Software Maintenance,
Chicago, Illinois, USA, September 11th - 17th 2004. IEEE
Computer Society, 2004.

[3] R. Koschke R. and D. Simon, Hierarchical Reflexion
Models, In Proc. of the 10th Working Conference on Reverse
Engineering (WCRE 2003), 13-16 November 2003, Victoria,
Canada, IEEE Computer Society Press, 2003, 36-45.

[4] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and
C. Riva. Symphony: View-driven software architecture
reconstruction. In Proc. of 4th Working IEEE / IFIP
Conference on Software Architecture (WICSA 2004), 12-15
June 2004, Oslo, Norway, pages 122–132. IEEE Computer
Society, 2004.

[5] Ferenc, R.; Beszédes A.: Gyimóthy T., Extracting facts with
Columbus from C++ code, In Proc. of Proceedings. 8th
European Conference on Software Maintenance and
Reengineering (CSMR 2004), Tampere, Finland, March 24-
26, 2004.

[6] Riva, C.; Selonen, P.; Systa, T.; Tuovinen, A.-P.; Xu, J.;
Yang, Y., Establishing a software architecting environment.
In Proc. of the 4th Working IEEE / IFIP Conference on
Software Architecture, Oslo, Norway, July 12-15 2004.

13

Productivity Analysis of Japanese Enterprise Software
Development Projects

Masateru Tsunoda
Nara Institute of Science and

Technology
Kansai Science City, 630-0192 Japan

masate-t@is.naist.jp

Akito Monden
Nara Institute of Science and

Technology
Kansai Science City, 630-0192 Japan

akito-m@is.naist.jp

Hiroshi Yadohisa
Doshisha University

1-3 Miyakodani, Tatara, Kyotanabe,
Kyoto, 610-0394 Japan

hyadohis@mail.doshisha.ac.jp

Nahomi Kikuchi
Software Engineering Center

Information-technology Promotion Agency
2-28-8, Hon-Komagome,

Bunkyo-ku, Tokyo, 113-6591 Japan

n-kiku@ipa.go.jp

Ken-ichi Matsumoto
Nara Institute of Science and

Technology
Kansai Science City, 630-0192 Japan

matumoto@is.naist.jp

ABSTRACT
To clarify the relation between controllable attributes of a soft-
ware development and its productivity, this paper experimentally
analyzed a software project repository (SEC repository), consist-
ing of 253 enterprise software development projects in Japanese
companies, established by Software Engineering Center (SEC),
Information-technology Promotion Agency, Japan. In the experi-
ment, as controllable attributes, we focused on the outsourcing
ratio of a software project, defined as an effort outsourced to sub-
contract companies divided by a whole development effort, and
on the effort allocation balance among development phases. Our
major findings include both larger outsourcing ratio and smaller
upstream process effort leads to worse productivity.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – Cost estimation,
productivity; K.6.1 [Management of Computing and Informa-
tion Systems]: Project and People Management – Strategic in-
formation systems planning;

General Terms: Management, measurement, economics

Keywords
Software productivity, subcontract, upstream process, custom
software, software project repository

1. INTRODUCTION
Estimation of software development effort is required throughout
a software development lifecycle to set up, evaluate and revise a
project plan including resource allocation and scheduling. Soft-

ware productivity is one of the key factors in drawing up the early
effort estimation in a project, although the productivity greatly
varies according to project attributes such as business area, appli-
cation type, programming language, team size and experience, etc
[8]. Past researches have shown that some attributes do affect the
productivity [2][7][8][9]. Unfortunately, many of these attributes,
e.g. business area and programming language, are usually not
controllable by a software development company.

This paper focuses on the project attributes that are controllable
by a software development company. Through the analysis of the
year 2005 version of the SEC repository consisting of 253 sam-
ples of enterprise software development in Japanese companies,
this paper seeks to clarify the relation between project attributes
and software development productivity. The repository has been
developed and maintained by Software Engineering Center (SEC),
Information-technology Promotion Agency, Japan [10].

In the analysis, as controllable project attributes, this paper fo-
cuses on the outsourcing ratio of a software project, and on the
effort allocation balance among development phases. While high
outsourcing ratio is one of the major distinctive properties of
Japanese enterprise software development, there is no past re-
searches focused on the relation between outsourcing ratio and
productivity of software development in Japan.

The reminder of this paper first describes details of the SEC re-
pository we used (Section 2). Next, describes analyses we con-
ducted to clarify the relation between project attributes and pro-
ductivity (Section 3). Afterward, related works are described (Sec-
tion 4); and in the end, conclusions and future topics will be
shown (Section 5).

2. THE SEC REPOSITORY
The year 2005 version of the SEC repository consists of 1009
software projects held in 15 Japanese companies. These projects
are custom enterprise software, which is the majority in Japan
[4][5]. Each project is characterized by about 400 attributes (met-
rics); however, 87.7% of them were unrecorded on average. Since
the project size is a necessary attribute to calculate the productiv-
ity, we excluded projects having missing value in the function

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

14

point (FP) attribute from our analysis. Also, we excluded mainte-
nance projects and enhancement projects, and focused to new
development projects and re-development projects because main-
tenance/enhancement processes are often very different from
new/re-development processes. As a result, 253 projects were
selected for the analysis. All these projects were waterfall process
development.

Productivity is defined as FP divided by (total) development effort
(person-hour). FP methods consist of IFPUG (34%), SPR (26%),
NESMA (3%), others (31%), and missing (5%). Productivity of
the upper quartile project is about 3.3 times larger than the lower
quartile project. Because of biased distribution of productivity and
other metrics, we used the median of metrics instead of the aver-
age in our analysis. We also used non-parametric tests in the
analysis.

In the analysis, we mainly focused to two factors to analyze pro-
ductivity. One is the outsourcing ratio, defined as an effort out-
sourced to subcontract companies divided by a whole develop-
ment effort. The other is the upstream process ratio, defined as the
sum of requirement analysis process effort and design process
effort divided by a whole development effort. In many cases, these
two factors are controllable by a software development company.

3. PRODUCTIVITY ANALYSIS
There are several factors that may influence software productivity.
One of the most considerable factors is the project size [1][3]
since development processes (e.g. human resource allocation)
vary according to the project size. Therefore, we also focus to the
FP, which is one of project size metrics, in addition to the out-
sourcing ratio and the upstream process ratio.

3.1 Project Size
Before focusing on the outsourcing ratio and the upstream process
ratio, we analyzed the influence of FP (project size), which is the
most basic factor in productivity analyses.

In this analysis projects were classified into three groups by their
FP. Projects whose FPs are equal to or less than lower quartile
were classified as the “low” group. Projects whose FPs are equal
to or greater than upper quartile were classified into the “high”
group. The rest projects were classified into the “middle” group.

To visually explore the difference in productivity among three
groups, boxplots were used. Figure 1 shows boxplots of produc-
tivity for the three project groups (FP=low, FP=middle, and
FP=middle) plus “overall” group for whole projects. Circles indi-
cate outliers, and stars indicate extreme outliers. Upper quartile of
FP is about 4.1 times larger than lower quartile. The figure shows
there are several high productivity projects in the low group. Me-
dian of productivity of the low group is about 1.4 times larger
than the high group. Median of productivity of the middle group
is only about 1.1 times larger than the high group. Using Mann-
Whitney U test, we confirmed that the difference of productivity
is statistically significant at the 0.05 level between the low group
and the high group. P-values are shown in the column “All” of
Table 1. The column “Group 1” and the column “Group 2” indi-
cate paired group when testing. Italic indicates p-value < 0.05.

Next we excluded the influence of outsourcing ratio since there
was a high correlation between FP and outsourcing ratio (Spear-
man's rank correlation was 0.51). Figure 2 shows boxplots for
projects whose outsourcing ratios were zero. Median of produc-
tivity is almost same among the three groups. The differences in
productivity among the three groups are not statistically signifi-
cant at all. P-values are shown in the column “Outsourcing ratio is
zero” of Table 1.

Above all, the SEC repository showed that the project size alone
do not directly influence the productivity. However, it can be said
that large size projects have high outsourcing ratio; and thus, it
indirectly leads to worse productivity.

3.2 Outsourcing Ratio
Figure 3 shows boxplots of productivity for three project groups
classified by the outsourcing ratio. (Note that the number of pro-
jects of the low group is different from the high group because
there are many projects whose outsourcing ratios are zero and all

Low Middle High Ov erall

Function Point

0.00

0.20

0.40

0.60

Pr
od

uc
tiv

ity

n=64 n=125 n=64 n=253

Figure 1. Boxplots of productivity for project groups clas-

sified by FP

Low Middle High Ov erall

Function Point

0.00

0.20

0.40

0.60

Pr
od

uc
tiv

ity

n=58 n=80 n=21 n=159

Figure 2. Boxplots of productivity for project groups clas-

sified by FP (Outsourcing ratio is zero)

Table 1. P-values for project groups classified by FP

Group 1 Group 2 All Outsourcing
ratio is zero

Low Middle 0.072 0.789
Low High 0.017 0.610

Middle High 0.296 0.744

15

of them are classified as the lower quartile group.) The figure
shows there are high productivity projects in the low group. Me-
dian of productivity of the low group is about 2.6 times larger
than the high group. The differences of productivity are statisti-
cally significant at the 0.05 level among the three groups. P-
values are shown in the column “All” of Table 2.

Next we excluded the influence of FP. As described in Section 3.1,
high FP projects tend to have high outsourcing ratio. Figure 4
shows boxplots for projects whose FPs are in the “middle” group.
Figure 4 shows similar tendency to Figure 3. The differences in
productivity are statistically significant at the 0.05 level between
the low group and other groups. P-values are shown in the column
“FP is middle” of Table 2.

These results suggest that lower outsourcing ratio projects have
higher productivity. We consider that higher outsourcing ratio
introduces communication overhead between companies. How-

ever, these results do not mean that the outsourcing ratio must be
suppressed because the development cost would be higher if a
company stopped outsourcing. (Unfortunately, because the SEC
repository does not record cost factors, we were not able to ana-
lyze relations between cost and outsourcing ratio.) In addition, if
the software size is too large to be developed in-house, a company
needs to outsource a part of software development. Anyway, a
company must be aware of the trade-offs between increase of
effort and decrease of cost.

3.3 Upstream Process Ratio
Figure 5 shows boxplots of productivity for three project groups
classified by upstream process ratio. The figure shows there are
high productivity projects in the high group. Median of productiv-
ity of the high group is about 1.8 times larger than the low group.
The differences in productivity are statistically significant at the
0.05 level between the high group and other groups. P-vales are
shown in the column “All” of Table 3.

Next we excluded the influences of FP and outsourcing ratio.
Figure 6 shows boxplots for projects whose FPs are in the “mid-
dle” group. The differences of productivity are statistically sig-
nificant at the 0.05 level between the high group and other groups.
P-values are shown in the column “Function point is middle” of
Table 3. Similarly, Figure 7 is boxplots of projects whose out-
sourcing ratio is zero. The differences in productivity are not sta-
tistically significant at the 0.05 level among the three groups. P-
values are shown in the column “Outsourcing ratio is zero” of
Table 3. Although there was no strong significance among these
groups, significance p=0.083 (< 0.10) was observed between
middle and high group.

From these results, high upstream process ratio alone has some
influence to the productivity. This suggests that high upstream
process ratio may avoid additional effort (reworks) on down-
stream processes.

4. RELATED WORK
Maxwell et al. [8] and Premraj et al. [9] analyzed the influence of
the business sector type on productivity, using Finnish software
development project dataset collected by Software Technology
Transfer Finland (STTF). Lokan et al. [6] also showed productiv-
ity analysis focused on the business sector using a dataset of In-
ternational Software Benchmarking Standards Group (ISBSG). In
these researches, projects in the manufacturing sector have the
highest productivity, and projects in the banking/Insurance sector
have the lowest productivity. Same tendency was observed in the
SEC repository.

Blackburn et al. [2] analyzed the influence of requirement analysis
process ratio on the productivity. They found that requirement
analysis process ratio leads to higher productivity of coding proc-
ess. Our finding about the influence of upstream ratio follows
their result.

5. CONCLUSIONS
We analyzed the influences of outsourcing ratio and upstream
process ratio on the development productivity of Japanese enter-
prise software development projects. We found that both lower
outsourcing ratio projects and higher upstream process ratio pro-

Low Middle High Overall

Outsourcing Ratio

0.00

0.20

0.40

0.60

Pr
od

uc
tiv

ity

n=159 n=30 n=63 n=253

Figure 3. Boxplots of productivity for project groups clas-

sified by outsourcing ratio

Low Middle High Overall

Outsourcing Ratio

0.00

0.20

0.40

0.60

Pr
od

uc
tiv

ity

n=80 n=17 n=27 n=125

Figure 4. Boxplots of productivity for project groups clas-

sified by outsourcing ratio (FP is middle)

Table 2. P-values for project groups classified by outsourc-
ing ratio

Group 1 Group 2 All FP is middle
Low Middle 3.2E-04 3.9E-04
Low High 8.8E-14 1.8E-07

Middle High 0.002 0.104

16

jects have significantly higher productivity. Our future work is to
analyze the influences of other factors thoroughly.

6. ACKNOWLEDGMENTS
The authors would like to thank Software Engineering Center,
Information-technology Promotion Agency, Japan for offering the
SEC Repository. This work is supported by the EASE (Empirical
Approach to Software Engineering) project of the Comprehensive
Development of e-Society Foundation Software program of the
Ministry of Education, Culture, Sports, Science and Technology
of Japan.

7. REFERENCES
[1] Banker, R., Chang, H., and Kemerer, C. Evidence on econo-

mies of scale in software development. Information and
Software Technology, 36, 5 (1994), 275-282.

[2] Blackburn, J., Scudder, G., and Wassenhove. L. Improving
Speed and Productivity of Software Development: A Global
Survey of Software Developers. IEEE Trans. on Software
Eng., 22, 12 (1996), 875-885.

[3] Boehm, B. Software Engineering Economics. Prentice Hall,
1981.

[4] Cusumano, M., MacCormack, A., Kemerer, C., and Crandall,
B. Software Development Worldwide: The State of the Prac-
tice. IEEE Software, 20, 6 (2003), 28-34.

[5] Duvall, L. A study of software management: The state of
practice in the United States and Japan. Journal of Systems
and Software, 31, 2 (1995), 109-124.

[6] Lokan, C., Wright, T., Hill, P., and Stringer, M. Organiza-
tional Benchmarking Using the ISBSG Data Repository.
IEEE Software, 18, 5 (2001), 26-32.

[7] Maxwell, K., Wassenhove, L., and Dutta, S. Software De-
velopment Productivity of European Space, Military, and In-
dustrial Applications. IEEE Trans. on Software Eng., 22, 10
(1996), 706-718.

[8] Maxwell, K., and Forselius, P. Benchmarking Software-
Development Productivity. IEEE Software, 17, 1 (2000), 80-
88.

[9] Premraj, R., Shepperd, M., Kitchenham, B., and Forselius, P.
An Empirical Analysis of Software Productivity over Time.
In Proceedings of 11th IEEE International Software Metrics
Symposium (METRICS'05) (Como, Italy, September), 2005,
37.

[10] Software Engineering Center, Information-technology Pro-
motion Agency, Japan The 2005 White Paper on Software
Development Projects (in Japanese). Nikkei Business Publi-
cations, 2005.

Low Middle High Ov erall

Upstream Process Ratio

0.00

0.20

0.40

0.60

Pr
od

uc
tiv

ity

n=50 n=99 n=50 n=253

Figure 5. Boxplots of productivity for project groups clas-

sified by upstream process ratio

Low Middle High Ov erall

Upstream Process Ratio

0.00

0.20

0.40

0.60

Pr
od

uc
tiv

ity

n=23 n=45 n=25 n=125

Figure 6. Boxplots of productivity for project groups clas-

sified by upstream process ratio (FP is middle)

Low Middle High Ov erall

Upstream Process Ratio

0.00

0.20

0.40

0.60

Pr
od

uc
tiv

ity

n=23 n=67 n=38 n=159

Figure 7. Boxplots of productivity for project groups clas-
sified by upstream process ratio (Outsourcing ratio is zero)

Table 3. P-values for project groups classified by up-
stream process ratio

Group 1 Group 2 All FP is
middle

Outsourcing
ratio is zero

Low Middle 0.819 0.974 0.595
Low High 0.009 0.016 0.222

Middle High 0.012 0.011 0.083

17

Coupling and Cohesion Measures for Evaluation of
Component Reusability

G. Gui
Department of Computer Science
University of Essex, Colchester,

CO4 3SQ, UK
Tel: +44 1206 873805

ggui@essex.ac.uk

P. D Scott
Department of Computer Science
University of Essex, Colchester,

CO4 3SQ, UK
Tel: +44 1206 872015

scotp@essex.ac.uk

ABSTRACT
This paper provides an account of new measures of coupling and
cohesion developed to assess the reusability of Java components
retrieved from the internet by a search engine. These measures
differ from the majority of established metrics in two respects:
they reflect the degree to which entities are coupled or resemble
each other, and they take account of indirect couplings or
similarities. An empirical comparison of the new measures with
eight established metrics shows the new measures are consistently
superior at ranking components according to their reusability.

Categories and Subject Descriptors
D.2.8.3 [Metrics]: Complexity measures.

General Terms
Measurement, Experimentation.

Keywords
Coupling, Cohesion, Reusability

1. INTRODUCTION
The work reported in this paper arose as part of a project that
retrieves Java components from the internet [1]. However,
components retrieved from the internet are notoriously variable in
quality. It seems highly desirable that the search engine should
also provide an indication of both how reliable the component is
and how readily it may be adapted in a larger software system.

A well designed component, in which the functionality has been
appropriately distributed to its various subcomponents, is more
likely to be fault free and easier to adapt. Appropriate distribution
of function underlies two key concepts: coupling and cohesion.
Coupling is the extent to which the various subcomponents
interact. If they are highly interdependent then changes to one are
likely to have significant effects on others. Hence loose coupling
is desirable. Cohesion is the extent to which the functions

performed by a subsystem are related. If a subcomponent is
responsible for a number of unrelated functions then the
functionality has been poorly distributed to subcomponents.
Hence high cohesion is a characteristic of a well designed
subcomponent.
We decided that the component search engine should provide the
quality rankings of retrieved components based on measures of
their coupling and cohesion. There is a substantial literature on
coupling and cohesion metrics which is surveyed in the next
section. We then describe in detail the metrics we have developed
which attempt to address some of the limitations of existing
metrics. In particular, we consider both the strength and
transitivity of dependencies. The following section describes an
empirical comparison of our proposed metrics and several popular
alternatives as predictors of reusability. Section 5 presents an
analysis of the results which demonstrate that our proposed
metrics consistently outperform the others. The paper concludes
with a discussion of the implications of the research.

2. COUPLING AND COHESION METRICS
Cohesion is a measure of the extent to which the various functions
performed by an entity are related to one another. Most metrics
assess this by considering whether the methods of a class access
similar sets of instance variables. Coupling is the degree of
interaction between classes. Many researches have been done on
software metrics [8], the most important ones are selected used in
our comparative study. Table 1 and Table 2 summarize the
characteristics of these cohesion and coupling metrics.

Table 1. Coupling metrics

Name Definition

CBO
[4][5][11]

Classes are coupled if methods or instance variables
in one class are used by the other. CBO for a class is
number of other classes coupled with it.

RFC
[4][5]

Count of all methods in the class plus all methods
called in other classes.

CF
[3][6]

Classes are coupled if methods or instance variables
in one class are used by the other. CF for a software
system is number of coupled class pairs divided by
total number of class pairs.

DAC[9] The number of attributes having other classes as
their types.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR’06, May 22-23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

18

Table 2. Cohesion metrics

Name Definition

LCOM [5] Number of non-similar method pairs in a class of
pairs.

LCOM3[7][
9]

Number of connected components in graph whose
vertices are methods and whose edges link similar
methods.

RLCOM
[10]

Ratio of number of non-similar method pairs to
total number of method pairs in the class.

TCC [2] Ratio of number of similar method pairs to total
number of method pairs in the class.

All of these measures have two important features in common.
First, they treat relationship between a pair of classes or methods
as a binary quantity; second, they treat coupling and cohesion as
an intransitive relation; that is no account is taken of the indirect
coupling and cohesion, although two of cohesion (LCOM3 [7][9]
and TCC [2]) have suggested extensions to incorporate indirect
relationships between methods. In cohesion metrics, it should be
noted that three of them (LCOM, LCOM3 and RLCOM) are in
fact measures of lack of cohesion. TCC [2], in contrast to the
other three metrics, measures cohesion rather than its absence. In
other respects it is similar to RLCOM, being the number of
similar method pairs divided by the total number of method pairs.

3. PROPOSED NEW METRICS
The study suggested that none of these measures was very
effective in ranking the reusability of Java components. We
therefore decided to develop alternative coupling and cohesion
metrics in the hope of achieving superior performance. One
obvious step was to develop measures that reflected the extent to
which a pair of classes was coupled or a pair of methods
resembled each other. Because none of the measures treated
coupling or similarity as transitive relations, we decided that such
indirect dependencies should be incorporated into our metrics.

3.1 Cohesion
We develop a cohesion metric that takes account of both the
degree of cohesion and transitive (i.e indirect) cohesion between
methods. Methods are said to be similar if the sets of instance
variables that they access overlap. We adopt a graph theoretical
approach. The methods of the class are the vertices. Suppose a
class has a set of method members M ≡ { M1, M2,…Mm} and let.
Vj ≡ {Vj,1, Vj,2, …. Vj,n} be the instance variables accessed by
method Mj. Then the edge from Mj to Mi exists if and only if Vj ∩
Vi is not null. Thus an edge of the graph reflects the similarity of
the methods in that they have at least one instance variable in
common. The similarity graph is undirected because intersection
is a symmetric relation. The next step is to associate a number
with each edge that reflects the extent to which the two methods
have instance variables in common. We therefore define
SimD(i,j), our measure of direct similarity of two methods, Mi and
Mj, as

()
ji

ji

VV

VV
jiSimD

∪

∩
=,

where i ≠ j (SimD(j,j) is defined to be zero). Note that 1 ≥
SimD(i,j) ≥ 0.
The extension of the measure to include indirect similarity
proceeds along the same lines as we employed for indirect
coupling. The strength of similarity provided by a path between
two methods is the product of the SimD values of the edges that
make up the path. Thus we define SimT(i,j,π), the transitive
similarity between methods Mi and Mj due to a specific path π, as

() ∏∏
∈∈ ∪

∩
==

ππ
π

tsts e ts

ts

e VV
VV

tsSimDjiSimT
,,

,),,(

where es,t denotes the edge between vertices s and t. As in the
case of coupling, the path with the highest SimT value is selected
to define the similarity of the two methods, Sim(i,j).

),,(),(maxπjiSimTjiSim =

where and Π is
the set of all paths from Mi to Mj. This measure is used to provide
a measure of the cohesion of the class, ClassCoh, by summing the
similarities of all method pairs and dividing by the total number
of such pairs:

),,(maxarg),(max ππ π jiSimTji Π∈=

mm

jiSim
ClassCoh

m

ji

−
=
∑

=
2

1,

),(

where m is the number of methods in the class. Finally, the
weighted transitive cohesion of the complete software system,
WTCoh, is defined as the mean cohesion of all the classes of
which it is comprised:

n

ClassCoh
WTCoh

n

j
j∑

== 1

where n is the number of classes in the system.

3.2 Coupling
As with cohesion measure, we regard software system as a
directed graph, in which the vertices are the classes comprising
the system. Suppose such a system comprises a set of classes C ≡
{C1, C2,…Cm}. Let Mj ≡ {Mj,1, Mj,2, …. Mj,n} be the methods of
the class Cj, and Rj,i the set of methods and instance variables in
class Ci invoked by class Cj for j ≠ i (Rj,j is defined to be null).
Then the edge from Cj to Ci exists if and only if Rj,j is not null.
Thus an edge of the graph reflects the direct coupling of one class
to another. The graph is directed since Rj,i is not necessarily equal
to Ri,j.

The next step is to associate a number with each edge that reflects
the extent of direct coupling from one class to another. We define
CoupD(i,j), as the ratio of the number of methods in class j
invoked by class I to the total number of methods in class I, which
indicates the impact of class j to class i.

()
ii

ji

MR
R

jiCoupD
+

= ,,

Then the indirect coupling between classes is included. Suppose
that CoupD(i,j) and CoupD(j,k) have finite values but that
CoupD(i,k) is zero. Thus although there is no direct coupling
between classes Ci and Ck, there is a dependency because Ci
invokes methods in Cj which in turn invokes methods in Ck. The
strength of this dependency depends on the two direct couplings
of which it is composed, a reasonable measure is defined as:

19

CoupD(i,j) × CoupD(j,k). This notion is readily generalised. A
coupling between two classes exists if there is a path from one to
the other made up edges whose CoupD values are all non-zero.
Thus we define CoupT(i,j,π), the transitive coupling between
classes Ci and Cj due to a specific path π, as

() ∏∏
∈∈ +

==
ππ

π
tsts e ss

ts

e MR
R

tsCoupDjiCoupT
,,

,,),,(

es,t denotes the edge between vertices s and t. Note first that
CoupT includes the direct coupling, which corresponds to path of
length one, and second that, because the CoupD values are
necessarily less than one, transitive couplings due to longer paths
will typically have lower values.
In general there may be more than one path having a non-zero
CoupT value between any two classes. We simply select the path
with largest CoupT value and hence define Coup(i,j), the strength
of coupling between the two classes, Ci and Cj to be:

),,(),(maxπjiCoupTjiCoup =

where),,(maxarg),(max ππ π jiCPTji Π∈= and Π is the
set of all paths from Ci to Cj. The final step is to use measure
between each pair of classes as a basis for a measure of the total
coupling of a software system. The weighted transitive coupling
(WTCoup) of a system is thus defined

mm

jiCoup
WTCoup

m

ji

−
=
∑

=
2

1,

),(

where m is the number of classes in the system.

4. AN EXPERIMENTAL COMPARISON
In our study, the metrics are used for a specific purpose:
predicting how much effort would be required to reuse a
component within a larger system. We therefore chose to measure
reusability as simply the number of lines of code that were added,
modified or deleted (NLOC) in order to extend its functionality in
a prescribed way. The more lines required, the lower the
reusability. This appears to us to be a crude but reasonable
measure of the effort that would be required to adapt a component
for use within a larger system. Three case studies were carried
out: Case 1 HTML Parser: The original components analysed
HTML documents, eliminated tags and comments and output the
text. The required extension was to count and output the number
of tags found during parsing.
Case 2 Lexical Tokenizer: The original components tokenized a
text document using user supplied token rules and output the
tokens on a web interface. The required extension was to count
and output the number of tokens retrieved.
Case 3 Barcode: The original components accepted a sequence of
alphanumeric characters and generated the corresponding
barcode. The required extension was to count the number of
letters.

For each case, 20 Java components were retrieved from a
repository of about 10,000 Java components retrieved form the
internet. The requisite extensions were then implemented by a
very experienced Java programmer and NLOC counted. Despite
the relative simplicity of the extensions, there was considerable
variation in the quantity of extra code required. We then
proceeded to investigate how successful the various measures of

coupling and cohesion are in predicting this quantity. Our
proposed metrics are compared with all the metrics reviewed in
section 2. In order to present the results on the same graph, those
measures that do not produce values in the range (0,1) (i.e. CBO,
RFC, DAC, LCOM and LCOM3) were divided by 100.

5. RESULTS
Two approaches were used to evaluate the performance of the
various measures in predicting reusability: linear regression and
rank correlation.

5.1 Linear Regression
The regression lines obtained for the five cohesion measures
when applied to the HTML parser components are shown in
Figure 1. The results for the other two sets of components were
similar. It is clear that some measures provide much more
consistent predictors than others. There are no obvious systematic
departures from linearity so the use of simple regression appears
reasonable. The regression lines obtained for coupling measures
demonstrate the same situation.

The coefficient of determination, R2, provides a measure of how
much of the variation in NLOC is accounted for by the measures.
Table 3 and Table 4 display the values of R2 obtained for each of
the coupling and cohesion measures on all three sets of
components. In each case, our proposed new measure, WTCoup
and WTCoh gave the largest value of R2, indicating that it was the
best linear predictor of reusability. The remaining measures
produced at least one R2 value so low as to indicate that that the
correlation was not significantly above chance at the 5% level.

Figure 1. Regression of cohesion measures against reusability

Table 3. R2 values for coupling measure regression lines.

Cases WTCoup CF CBO RFC DAC

HTML Parser .846 .621 .259 .793 .254

Lexical Token. .836 .098 .004 .729 .738

Barcode Gen. .958 .693 .121 534 .507

20

Table 4. R2 values for cohesion measure regression lines.
Cases WTCoh RLCOM LCOM3 LCOM TCC

H. Parser .847 .319 .259 .564 .178

L. Token. .838 .783 .002 .709 .646

B. Gen. .892 .702 .177 .101 .785

5.2 Spearman Rank Correlation
Although these results provide a strong indication that the
proposed new measures are better predictors of reusability than
the alternatives, our primary purpose is simply to rank a set of
components retrieved from the repository. We therefore also
computed the Spearman rank correlation coefficients between the
rankings determined by NLOC and those produced by the various
coupling and cohesion measures (Tables 5 and 6).

Table 5. Rank correlations values for coupling measures.
Cases WTCoup CF CBO RFC DAC

HTML Parser .975 .882 .465 .896 .507

Lexical Token. .952 .291 .117 .822 .817

Barcode Gen. .974 .758 .485 .656 .800

Table 6. Rank correlations values for cohesion measures.
Cases WTCoh RLCOM LCOM3 LCOM TCC

H. Parser -.993 .522 .218 .564 -.343

L. Token. .838 .783 .002 .709 .646

Bar. Gen. .892 .702 .177 .101 .785

The relative performance of the various measures is consistent
with the regression studies. In all cases, the two proposed
measures, WTCoup and WTCoh, produced the highest rank
correlations. They are in fact extremely high; no value was lower
than 0.95.

6. DISCUSSION
These results clearly demonstrate that our proposed metrics for
coupling and cohesion are very good predictors of the number of
lines of code required to make simple modifications to Java
components retrieved from the internet and are superior to other
measures. The majority of coupling and cohesion metrics treat
coupling and similarity as simple binary quantities and ignore the
transitive relationship. Both our proposed measures concern these
issues: First, they are weighted; that is, they use a numeric
measure of the degree of coupling or similarity between entities
rather than a binary quantity. Second they are transitive; that is,
they include indirect coupling or similarity mediated by
intervening entities. It is reasonable to enquire whether both these
characteristics are necessary to achieve good prediction
performance. In fact our investigations suggest that both
contribute to the performance.
Although both WTCoup and WTCoh are good predictors, it is
worth considering whether a linear combination might not
produce even better results. Multiple regression for the Lexical
Tokenizer components produced an R2 of 0.981; the ranking
produced using the regression coefficients to weight the terms had
a Spearman correlation of 0.986. These are superior to the results

produced by each metric alone but not by a great margin simply
because there original results leave only modest scope for
improvement. Developing such a composite quality measure
would entail assuming the relative weighting of the two metrics
should be the same for all types of component.

This work arose from, and is intended primarily as a contribution
to, search engine technology. Nevertheless, we believe it may be
of interest to a wider body of researchers: in particular, those
involved in developing and evaluating software metrics.

7. ACKNOWLEDGMENTS
We are grateful to the four UK higher education funding bodies (for
England, Scotland, Wales and Northern Ireland) for an Overseas Research
Studentship (ORS/2002015010) awarded to G. Gui.

8. REFERENCES
[1] Gui, G. and Scott, P. D. Vector Space Based on Hierarchical

Weighting: A Component Ranking Approach to Component
Retrieval. In Proceedings of the 6th International Workshop
on Advanced Parallel Processing Technologies (APPT’05)

[2] Bieman, J. M. and Kang, B-Y. Cohesion and Reuse in an
Object-Oriented System. In Proc. ACM Symposium on
Software Reusability (SSR’95). (April 1995) 259-262.

[3] Briand, L., Devanbu, P. and Melo, W. An investigation into
coupling measures for C++. Proceedings of ICSE 1997.

[4] Brito e Abreu, F. and Melo, W. Evaluating the impact of OO
Design on Software Quality. Proc. Third International
Software Metrics Symposium. (Berin 1996).

[5] Chidamber, S. R. and Kemerer, C. K. A Metrics Suite for
Object Oriented Design. IEEE Transactions on Software
Engineering, Vol. 20 (June 1994), 476-493.

[6] Harrison, R., S.J.Counsell, & R.V.Nith. An Evaluation of the
MOOD Set of Object-Oriented Software Metrics. IEEE
Transactions on Software Engineering, Vol. 24 (June 1998),
491-496.

[7] Hitz, M. and Montazeri, B. Measuring coupling and cohesion
in object-oriented systems. Proceedings of International
Symposium on Applied Corporate Computing. (Monterrey,
Mexico, 1995).

[8] Kanmani, S., Uthariraj, R., Sankaranarayanan, V. and
Thambidurai, P. Investigation into the Exploitation of
Object-Oriented Features. ACM Sigsoft, Software
Engineering Notes, Vol. 29 (March 2004).

[9] Li, W. & Henry, S. Object-Oriented metrics that predict
maintainability. Journal of Systems and Software. 23(2) 1993
111-122.

[10] Li, X., Liu, Z. Pan, B. & Xing, B. A Measurement Tool for
Object Oriented Software and Measurement Experiments
with It. In Proc. IWSM 2000, 44-54.

[11] Subramanyam, R. & Krishnan, M. S. Empirical Analysis of
CK Metrics for Object-Oriented Design Complexity:
Implications for Software Defects. IEEE Transactions on
Software Engineering, Vol. 29 (April 2003), 297-310.

21

TA-RE: An Exchange Language for Mining Software Repositories
Sunghun Kim1, Thomas Zimmermann2, Miryung Kim3, Ahmed Hassan4, Audris Mockus5,

Tudor Girba6, Martin Pinzger7, E. James Whitehead, Jr.1, and Andreas Zeller2

1University of California,
Santa Cruz, CA, USA

{hunkim, ejw}@cs.ucsc.edu

2Saarland University,
Saarbrücken, Germany

{tz, zeller}@acm.org

3University of Washington, USA
miryung@cs.washington.edu

4University of Waterloo, Canada

aeehassa@plg.uwaterloo.ca

5Avaya labs
audris@avaya.com

6University of Berne,
Switzerland

girba@iam.unibe.ch

7University of Zurich,
Switzerland

pinzger@ifi.unizh.ch

ABSTRACT
Software repositories have been getting a lot of attention from
researchers in recent years. In order to analyze software
repositories, it is necessary to first extract raw data from the
version control and problem tracking systems. This poses two
challenges: (1) extraction requires a non-trivial effort, and (2) the
results depend on the heuristics used during extraction. These
challenges burden researchers that are new to the community and
make it difficult to benchmark software repository mining since it
is almost impossible to reproduce experiments done by another
team. In this paper we present the TA-RE corpus. TA-RE collects
extracted data from software repositories in order to build a
collection of projects that will simplify extraction process.
Additionally the collection can be used for benchmarking. As the
first step we propose an exchange language capable of making
sharing and reusing data as simple as possible.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Restructuring, reverse engineering, and
reengineering, K.6.3 [Management of Computing and
Information Systems]: Software Management – Software
maintenance

General Terms
Measurement, Experimentation

Keywords
Corpus, Software Repository Mining, Prediction, Analysis

1. INTRODUCTION
Software repositories, such as version archives, problem databases,
newsgroups, and mailing lists, have been getting a lot of attention
from researchers in recent years. They have been used to discover
previously unknown information and evaluate existing software
engineering approaches and theories. Mining software repositories
(MSR) is an active research area.

This has lead to a wide range of topics including co-change
analysis [1, 3, 23], origin analysis [7, 11], signature change
analysis [12], defect analysis and prediction [8], investigation of
code clones [10], code decay [5], estimating drivers for software
change effort [9] and quality [18], identifying key features of open
source development process [14], chunking of software in order to
facilitate distributed development teams [17], and constructing
tools to identify expert developers [15].

Even though these research topics vary, every analysis needs to
first extract data from software repositories. Developing such
extraction tools requires a non-trivial effort, particularly for
researchers new to this area. Kenyon was recently developed to
simplify extraction from version archives [2]. However, such tools
still require knowledge about version control systems and are thus
difficult to learn.
Even though common tools may facilitate research, it remains
difficult to reproduce existing results. First, some required
information that is not available in software repositories has to be
inferred using heuristics and through interviews of the project
participants. The latter is often essential because different projects
tend have different development processes and different change
and reporting practices. Typical examples are the recovery of
change transactions from CVS [22] and the identification of bug
fixes [16]. The algorithms used differ widely in existing research
efforts. Since choosing different parameters may lead to
completely different results, benchmarking is almost impossible.
Second, when analyzing open-source projects, researchers rely on
the availability of those repositories in the future. However, this
assumption is very optimistic in particular since many projects are
currently migrating their CVS repositories to Subversion. As a
result, the original CVS repositories may be gone in a few years.

We also want to analyze closed source projects. In the rare event
such a code history becomes publicly available, it is unlikely we
will have direct access to its SCM repository.

Other research areas address the above problems by providing a
collection of common test cases or documents. Examples are the
UCI Repository [19], the Reuters corpus [13] from text
classification research, and the PROMISE Repository [20]. In this
paper, we propose a similar solution: a collection of extracted
software repositories called the TA-RE1 corpus.

1 TA-RE is a Korean word and means “group” or “cluster”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR ’06, May 22-23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

22

The TA-RE corpus consists of (1) an exchange language and (2)
extracted data of a set of selected software projects that will allow
researchers to reproduce and benchmark their experiments. The
vision of TA-RE is that every paper on mining software
repositories will share its extracted data via the TA-RE repository.
Other researchers can then reuse this information without
spending too much time on extraction.

TA-RE needs to be widely accepted and adopted; otherwise it will
have no impact. One key to acceptance is for the data sharing to
be as easy as possible. This leads to several requirements that are
discussed in Section 2. The resulting exchange language is
presented in Section 3, and Section 4 discusses alternatives to TA-
RE and Section 5 presents related work. Section 6 concludes the
paper with an outlook and future work.

2. REQUIREMENTS
The success of the TA-RE project depends on whether the
research community will adopt it. Therefore we discuss several
requirements for the corpus that would increase its appeal.

2.1 Completeness of Information
(E1) The exchange language should be able to describe all
information that is available from most standard SCM systems:

1. Transactions: the author, date, log message, and the
version of each changed file. This information enables
reconstruction of proper snapshots.

2. Changes: the files that were changed, including their
new content. This information suffices for lightweight
syntactic analysis like creating abstract syntax trees.

3. Snapshots: a consistent state of a project after each
transaction. This information is needed for static and
dynamic program analysis, clone detection, etc.

Not all SCM systems provide the above information. For instance,
for CVS the transaction information is not stored and has to be
recovered by heuristics.

(E2) Additionally the exchange language should support
information that can be inferred for most SCM systems:

1. Source code positions of classes, methods, or functions
2. Size and location of the change: which lines were added,

deleted or modified
3. Nature of a change: adaptive, corrective, or perfective

changes [16], fix-inducing changes [21]
4. Counts: number of methods, lines, changes or fixes
5. References to other artifacts, such as problem databases,

mailing lists, and newsgroups

(E3) All information provided by the exchange language should
come with a quality (or trust) annotation. A transaction from a
Subversion archive may be of low quality if it was migrated from
a CVS repository. Such annotations should describe known data
quality problems or heuristics used to calculate the relevant
attribute (see E4).

(E4) For inferred information the exchange language should
provide ways to identify the algorithm that was used. Additionally,
it should be possible to use different variants of an algorithm in
the same dataset (e.g., different algorithms to recognize bug fixes).

(E5) The exchange language should be extensible in anticipation
for new research interests.

2.2 Applicability to Research and Industry
(A1) The corpus should support closed-source projects. Such
projects might be willing to share some information without
revealing their actual source code. This means that TA-RE needs
to provide tools to anonymize the extracted data. To simplify this
process, the source code and the description of changes should be
separated in the exchange language.

2.3 Usability
(U1) The exchange language should allow any researcher to
provide new data with minimal effort.

(U2) The data from the corpus should be easy to use for
researchers in their projects. In particular, the exchange language
should be straightforward and must not be too difficult to parse,
i.e., cross-references or complicated relations should be avoided.

(U3) The corpus itself should not be restricted to any platform. It
should be usable for programs that are specific to any type of
machine or system.
(U4) The exchange language should be well documented.

3. TA-RE CORPUS
We describe the TA-RE corpus exchange language in this section.

3.1 Available Information
The TA-RE exchange language can represent the following
classes of data:

Extraction level 1: directly extractable data from SCM systems:
- Transaction information: author, transaction time, and

change log
- All file contents (deltas) with the original directory structures
- File level co-change information
Extraction level 2: data obtained by further analysis, such as
source code parsing “
- Entity (class, function, and method) level information and

content
- File addition and deletion Information
- Unique identifier for each transaction and content
- Entity level co-change information
Mined data: data extracted using heuristics:
- Recovered transactions (CVS [22])
- Transaction, file, and entity level bug-fix data [6]
- Fix-inducing data at file and entity levels [21]
- Accumulated bug count at file and entity levels
- Origin relationship between entities [7, 11]
- Reference links among transactions, contents, and entities.

3.2 Corpus Model
The TA-RE corpus data contains two flavors: transaction and
content data. The corpus data has multiple transactions, and a
transaction has multiple contents. Instead of providing all contents
of each transaction, TA-RE provides only changed (added, deleted,
and modified) contents in each transaction, since it is possible to
recover all transaction contents from only the changed contents.
The content data consist of two parts: content metadata and
original file content. The content metadata has metadata for the
original file content such as reference, change status, count, and
entity information. We separate the content metadata and original
file content for two reasons: (1) to store binary files and (2) to
make original file contents optional for closed source projects.

23

We use sequential numbers (starting from 1) for transaction and
content identifiers. The transaction identifiers are ordered
chronologically, hence the transaction 1 is older than the
transaction 2. We can easily determine the transaction order from
transaction identifiers. The content identifier is unique for the
same file name. For example, file ‘/src/foo.java’ will have the
same identifier over all transactions.

Since we use numeric identifiers for both transactions and
contents, we use prefixes to avoid possible confusion between
their identifiers. We use the prefix ‘t’ for transactions and the ‘c’
for contents. Content metadata is stored as a file whose name is
the combination of the content prefix and a content identifier such
as ‘c32’. Since content exchange language consists of metadata
data and original file content, we use file extensions to distinguish
them: ‘.meta’ for the metadata and ‘.con’ for the original file
content.

Each transaction has a directory whose name is the combination
of the transaction prefix and a transaction identifier. Transaction
information is stored as a file, ‘transaction’ in the corresponding
transaction directory. All contents (*.meta and *.con) of the
transaction are stored in the directory as well. For example, for
transaction 1, the ‘t1’ directory is created, and contains the
transaction information file (‘transaction’) and content files
(‘c[content-id].meta’ and ‘c[content-id].con’) of the transaction.

Figure 1. TA-RE Corpus Model
Figure 1 shows the TA-RE corpus model. Each transaction
directory (‘t[transaction-id]’) has three kinds of corpus files:

Transaction information (‘transaction’): information of
the corresponding transaction.
Content metadata (‘c[content-id].meta’): metadata of the
content
Original file content (‘c[content-id].con’): the original file
content (optional)

The transaction and content metadata exchange language are
formatted using XML. An example of transaction corpus
exchange language is shown in Figure 2. It has the TA-RE
exchange language version number, transaction id, release, author,
data, indication of transaction nature, and change logs.

<?xml version="1.0" encoding="utf-8" ?>
<T:transaction xmlns:T="TA-RE:" id="t32">
 <T:corpus-version>0.1</T:corpus-version>
 <T:author>hunkim</T:author>
 <T:date>1995.3.1.1 xxx GMT</T:date>
 <T:nature kind="release" value=”release 1.0”/>
 <T:nature kind="fix" heuristic="mockus2000"/>
 <T:nature kind="fix" heuristic="fischer2003"/>
 <T:change-log>Fixed compilation error in foo.c
 </T:change-log>
</T:transaction>

Figure 2. An example of transaction data
Figure 3 shows an exchange language example of a content
metadata file. Only changed content data (added, deleted,
modified) are present in TA-RE. The metadata have the original
file name, references, counts, and entity data. The original file
content can be fount at the ‘c[content-id].con’ file in the same

transaction directory. The detailed XML elements and DTD are
described in http://tare.dforge.cse.ucsc.edu/.

Figure 3. An example of a content metadata file. This content
fixes the same content at transaction 29. This change includes
bugs (fix-inducing changes). The bugs in this content change
are fixed in transaction 45 and transaction 99. The original

file content is stored in ‘c32.con’ in the ‘t40’ directory.

4. DISCUSSION
4.1 Why not use Traditional Extractors?
There are SCM fact extractors such as Kenyon [2] and APFEL [4].
These extractors are useful for extracting data from SCM systems
without dealing with the SCM connections or protocols directly.
Choosing different extractor options will yield different data from
the same SCM repository. For example, the number of
transactions and the number change contents of a transaction may
be different when extraction tools use different CVS sliding
windows times. Mined data in TA-RE such as bug-fix data or
origin analysis data need to be provided by the extractor using
their own heuristic options. Extracting different data from the
same SCM systems makes it difficult to reproduce existing
results.

4.2 Why not use DBMS Schemas?
Fischer et al. proposed DBMS schemas [6] to store data for
software repository mining research. If the schema is complete
and publicly available, the data in DBMS are beneficial for all
software repository mining researchers. TA-RE provides an
exchange language. It does not enforce any universal database
schema because different research might need different formats.
Use of an exchange format avoids this issue, as each researcher
can write tools to export TA-RE to their project specific DB
schema. Every researcher only has to write the import/export tools
once and can reuse them for every project she downloads from
TA-RE

<?xml version="1.0" encoding="utf-8" ?>
<T:content xmlns:T="TA-RE:" id="c32"
 filename="src/edu/ucsc/Kenyon.java">
 <T:corpus-version>0.1</T:corpus-version>
 <T:change-status value="modified"/>
 <T:reference kind="partof" level=”transaction”
 transaction-id="t40"/>
 <T:reference kind="fixes" level=”content”
 transaction-id="t29" content-id=”c32”/>
 <T:reference kind="fixed-by" level=”content”
 transaction-id="t45" content-id=”c32”/>
 <T:reference kind="fixed-by" level=”content”
 transaction-id="t99" content-id=”c32”/>
 <T:count kind="accumulated-fix" value="2"/>
 <T:count kind="accumulated-fix-inducing" value="3"/>
 <T:count kind="accumulated-change" value="10"/>
 <T:entity level=”class” id=”class-foo” name="Foo"
 start-pos="20" end-pos="2564">
 <T:entity level=”method” id=” foo” name="foo”
 return-type=”void” parameters=”int I, char *var"
 start-pos="32" end-pos="95">
 <T:reference kind="fixes" level=”entity”>
 tansaction-id="t23" content-id=”c32” entity-id=”foo”/>
 </T:entity>
 <T:entity level=”method” id=bar” name="bar”
 return-type=”char” parameters=”int i, char c"
 start-pos="103" end-pos="195">
 </T:entity>
 ...
 </T:entity>
</T:content>

24

4.3 Why not use Transaction-Aware SCM?
Transaction-aware SCM systems such as Subversion provide
change based revision numbers (no need to recover transactions),
log renaming events, and support metadata-setting features. Using
SCM systems requires an extraction process, and it has the same
limitations of using extractors (Section 4.1). TA-RE provides
downloadable and ready-to-use data including all mined data such
as bug-fix and big-inducing change information, which are not
provided by SCM systems such as Subversion.

4.4 Closed Source Project Support
The TA-RE corpus exchange language can be used for closed
source projects. First author information in transaction data files
can be replaced with numeric ids to hide real author ids. The file
names in the content metadata file can be omitted or replaced with
obfuscated names. The original file contents stored in separate
files (c[content-id].con) can be omitted. In addition, all entity
information can be omitted.

5. RELATED WORK
The PROMISE repository provides various data sets for predictive
model research in software engineering [20]. Data sets in the
PROMISE repository mostly consist of features and classes or
values. Using the features, researchers develop prediction models
to predict classes (classification) or values (regression).
PROMISE data sets are limited for general software repository
mining research. Since they provide pre-defined features such
LOC, count of operators, and count of blank lines, it is hard to
extract new features that are not defined in the data set. The data
sets are focused on developing predictive models. The non-
predictive model research such as origin analysis, code clone
genealogy, or co-change analysis cannot be performed using the
data sets in PROMISE repository.

The UCI Repository of machine learning [19] or Reuters Corpus
[13] are de facto standard benchmarking data set for text
classification research. The data stets enables researchers to
compare their classification results with others. TA-RE is inspired
from them, but their data sets are designed for the text
classification.

6. CONCLUSION AND FUTURE WORK
It is no secret that the majority of time spent during software
repository mining is focused on extracting data. Additionally, the
“magic” that is involved in the extracting phase makes
comparison of results and benchmarking impossible. The TA-RE
project addresses this issue by specifying a common exchange
language that will be used to share project data. Using a common
exchange language will enable reuse of data as much as possible.
The next steps of this project are the following:

Finalize exchange language. This paper serves as a proposal for
a common exchange language. Thus, designing a common
language will heavily benefit from discussions and participation
of other researchers. We hope that the discussions at the MSR
workshop will give us enough feedback to finalize the exchange
language.

Provide initial dataset. Once the exchange language is finalized,
the participants of the TA-RE project will create an initial dataset
for several selected projects.

Include other data sources. The initial exchange language will
describe data only from version archives. For the next release, we

plan to include additional data sources such as problem databases,
mailing lists, or newsgroups.

For more information visit: http://tare.dforge.cse.ucsc.edu/
or join the discussion: http://groups.google.com/group/TaRe

7. REFERENCES
[1] J. Bevan and E. J. Whitehead, Jr., "Identification of Software Instabilities,"

Proc. of 2003 Working Conference on Reverse Engineering (WCRE 2003),
Victoria, Canada, 2003.

[2] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey, "Facilitating
Software Evolution with Kenyon," Proc. of the 2005 European Software
Engineering Conference and 2005 Foundations of Software Engineering
(ESEC/FSE 2005), Lisbon, Portugal, pp. 177-186, 2005.

[3] D. Beyer and A. Noack, "Clustering Software Artifacts Based on Frequent
Common Changes," Proc. of the 13th IEEE International Workshop on
Program Comprehension (IWPC 2005), St. Louis, Missouri, USA, pp. 259-
268, 2005.

[4] V. Dallmeier, P. Weißgerber, and T. Zimmermann, "APFEL: A
Preprocessing Framework For Eclipse," 2005, http://www.st.cs.uni-
sb.de/softevo/apfel/.

[5] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus, "Does
Code Decay? Assessing the Evidence from Change Management Data,"
IEEE Transactions on Software Engineering, vol. 27, pp. 1-12., 2001.

[6] M. Fischer, M. Pinzger, and H. Gall, "Populating a Release History Database
from Version Control and Bug Tracking Systems," Proc. of 2003 Int'l
Conference on Software Maintenance (ICSM'03), pp. 23-32, 2003.

[7] M. W. Godfrey and L. Zou, "Using Origin Analysis to Detect Merging and
Splitting of Source Code Entities," IEEE Trans. on Software Engineering,
vol. 31, pp. 166- 181, 2005.

[8] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, "Predicting Fault
Incidence Using Software Change History," IEEE Transactions on Software
Engineering, vol. 26, pp. 653-661, 2000.

[9] T. L. Graves and A. Mockus, "Inferring Change Effort from Configuration
Management Data," Proc. of In Metrics 98: Fifth International Symposium
on Software Metrics, Bethesda, Maryland, pp. 267-273, 1998.

[10] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, "An Empirical Study of
Code Clone Genealogies," Proc. of the 2005 European Software Engineering
Conference and 2005 Foundations of Software Engineering (ESEC/FSE
2005), Lisbon, Portugal, pp. 187-196, 2005.

[11] S. Kim, K. Pan, and E. J. Whitehead, Jr., "When Functions Change Their
Names: Automatic Detection of Origin Relationships," Proc. of 12th
Working Conference on Reverse Engineering (WCRE 2005), Pennsylvania,
USA, 2005.

[12] S. Kim, E. J. Whitehead, Jr., and J. Bevan, "Analysis of Signature Change
Patterns," Proc. of Int'l Workshop on Mining Software Repositories (MSR
2005), Saint Louis, Missouri, USA, pp. 64-68, 2005.

[13] D. Lewis, Y. Yang, T. Rose, and F. Li, "RCV1: A New Benchmark
Collection for Text Categorization Research " Journal of Machine Learning
Research, vol. 5, pp. 361-397, 2004.

[14] A. Mockus, R. F. Fielding, and J. Herbsleb, "A Case Study of Open Source
Development: The Apache Server," Proc. of 22nd Int'l Conference on
Software Engineering (ICSE 2000), Limerick, Ireland, pp. 263-272 2000.

[15] A. Mockus and J. Herbsleb, "Expertise Browser: A Quantitative Approach to
Identifying Expertise," Proc. of 24rd Int'l Conference on Software
Engineering (ICSE 2002), Orlando, Florida, pp. 503-512, 2002.

[16] A. Mockus and L. G. Votta, "Identifying Reasons for Software Changes
Using Historic Databases," Proc. of International Conference on Software
Maintenance (ICSM 2000), San Jose, California, USA, pp. 120-130, 2000.

[17] A. Mockus and D. M. Weiss, "Globalization by Chunking: a Quantitative
Approach," IEEE Software, vol. 18, pp. 30-37, 2001.

[18] A. Mockus, P. Zhang, and P. Li, "Drivers for Customer Perceived Software
Quality," Proc. of 2005 Int'l Conference on Software Engineering (ICSE
2005), Saint Louis, Missouri, USA, 2005.

[19] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz, "UCI Repository of
machine learning databases," 1988,
http://www.ics.uci.edu/~mlearn/MLRepository.html.

[20] J. Sayyad Shirabad and T. J. Menzies, "The PROMISE Repository of
Software Engineering Databases," 2005,
http://promise.site.uottawa.ca/SERepository.

[21] J. Sliwerski, T. Zimmermann, and A. Zeller, "When Do Changes Induce
Fixes?" Proc. of Int'l Workshop on Mining Software Repositories (MSR
2005), Saint Louis, Missouri, USA, pp. 24-28, 2005.

[22] T. Zimmermann and P. Weißgerber, "Preprocessing CVS Data for Fine-
Grained Analysis," Proc. of Int'l Workshop on Mining Software Repositories
(MSR 2004), Edinburgh, Scotland, pp. 2-6, 2004.

[23] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, "Mining Version
Histories to Guide Software Changes," IEEE Trans. Software Engineering,
vol. 31, pp. 429-445, 2005.

25

The Evolution Radar:
Visualizing Integrated Logical Coupling Information

Marco D’Ambros, Michele Lanza, Mircea Lungu
Faculty of Informatics

University of Lugano, Switzerland

{marco.dambros, michele.lanza, mircea.lungu}@lu.unisi.ch

ABSTRACT
In software evolution research logical coupling has extensively been
used to recover the hidden dependencies between source code arti-
facts. They would otherwise go lost because of the file-based na-
ture of current versioning systems. Previous research has dealt with
low-level couplings between files, leading to an explosion of data
to be analyzed, or has abstracted the logical couplings to module
level, leading to a loss of detailed information. In this paper we
propose a visualization-based approach which integrates both file-
level and module-level logical coupling information. This not only
facilitates an in-depth analysis of the logical couplings at all granu-
larity levels, it also leads to a precise characterization of the system
modules in terms of their logical coupling dependencies.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Maintenance, Version Control, Re-
engineering, Reverse Engineering

General Terms
Measurements, Design

Keywords
Evolution, Logical Coupling, Visualization

1. INTRODUCTION
Versioning systems allow developers to record the history of a

software project. The facilities given by versioning systems and
the amount of data retrieved fostered the research field of software
evolution [13], whose goal is to analyze the history of a software
system and infer causes of its current problems, and possibly pre-
dict its future.

The history of a software system also holds information about
the logical couplings. These are implicit and evolutionary depen-
dency relationships between the artifacts of a system which, al-
though potentially not structurally related, evolve together and are
therefore linked to each other from a development process point of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06,May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

view. In short, logically coupled entities have changed together in
the past and are thus likely to change in the future. Logical cou-
pling information can therefore be used to predict the evolution of
a software system. Moreover, logical coupling information reveals
potentially misplaced artifacts in a software system, because enti-
ties that evolve together should be placed close to each other for
cognitive reasons: A developer who modifies a file in a system
could forget to modify related files because they are placed in other
subsystems or packages.

In this paper we propose a technique to inspect logical coupling
relationships, which integrates information both at a module-level
(which subsystems are coupled with each other) and at a file-level
(which files are responsible for the logical couplings). Our tech-
nique is based on a specific visualization that we namedEvolution
Radar. Visualization techniques have already been successfully
used to study the evolution of software systems [1, 5, 10, 11, 14,
16,17].

With our approach we tackle the following problems:

• How to present very large amounts of evolutionary informa-
tion in an effective way.

• How to render logical coupling relationships in an intuitive
way.

• How to enable a developer to study and inspect these rela-
tionships and to guide him to the files that are responsible for
the logical couplings.

All the results and the examples presented in the Paper have been
obtained by applying the presented visualization technique on the
Mozilla (www.mozilla.org) case study.

Structure of the paper. In Section 2 we discuss the research that
has been performed on logical coupling. In Section 3 we introduce
our approach based on theEvolution Radarto render logical cou-
pling information. We validate our technique on a large software
system in Section 4 and we look at related work in Section 5. In
Section 6 we conclude the Paper by summarizing our contributions
and give an outlook on our future work in this field.

2. LOGICAL COUPLING
Logical coupling represents the implicit dependency relationship

between two or more software artifacts that have been observed to
frequently change together during the evolution of the system. This
co-change information can either be present in the versioning sys-
tem, or must be inferred by analysis. For example subversion marks
co-changing files at commit time as belonging to the samechange
setwhile the files which are logically coupled must be inferred from
the modification time of each individual file.

26

Figure 1: A sample Evolution Radar visualization of the core Mozilla modules.

The concept of logical coupling was first introduced by Gallet
al. [7] to detect implicit relationships between modules. The tech-
nique that they proposed uses information from the CVS version-
ing control system to detect dependencies between the modules of
a system. They used logical coupling to analyze the dependen-
cies between the different modules of a large telecommunications
software system and show that the approach can be used to derive
useful insights on the architecture of the system. There are two
reasons why the technique proved to be useful:

• It is more lightweight than structural analysis, as it needs to
analyze a smaller amount of data,i.e.,only the data provided
by the CVS log files. Moreover, as it works at text level, it
can analyze systems written in multiple languages without
the trouble of parsing and analyzing the data.

• It can reveal dependencies that are not structural, and there-
fore are not present in the code or in the documentation.
These dependencies are the most troublesome and are prone
to represent sources of bugs in software projects.

Later the same authors revisited the technique to work at a lower
abstraction level. They detected logical couplings at class level [8]

and validated it on 28 releases of an industrial software system.
The authors showed through a case study that architectural weak-
nesses such as poorly designed interfaces and inheritance hierar-
chies could be detected based on logical coupling information.

Ratzingeret al. [15] used the same technique for analyzing the
logical coupling at the class level with the aim of learning about,
and improving the quality of the system. To accomplish this, they
definedcode smellsbased on the logical coupling between classes
of the system.

Working at a finer granularity level, Zimmermannet al.[20] used
the information about changes that are occurring together to predict
entities that are likely to be modified when one is being modified.

The main problem with the mentioned approaches is that they
either work at the architecture level,i.e., without knowing which
finer-grained entities cause the logical coupling, or they work at
the file (or even finer) granularity level,i.e., losing the global view
of the system.

In this paper we propose an approach to overcome this shortcom-
ing by means of a visualization technique calledEvolution Radar,
presented next.

27

3. THE EVOLUTION RADAR
The Evolution Radar is a visualization technique to render file-

level and module-level logical coupling information in an integrated
and interactive way, thus allowing the viewer to navigate and query
the visualized data. It is implemented in BugCrawler [6].

3.1 Principles
The Evolution Radar (see Figure 1) visualizes the logical cou-

pling of one module with the others. The module in focus is placed
in the middle of a pie chart, where each sector represents one of
the other modules. The size of each sector depicts the size of each
module in terms of number of files. The modules are sorted accord-
ing to this size metric.

The files of each of those modules are represented as colored cir-
cles and placed according to the logical coupling they have with the
module placed in the center (the closer the files are to the center, the
more coupled they are). The logical coupling can also be mapped
on the color of the figures using a temperature representation: the
hotter (from blue to red) the color is, the higher the value of the
logical coupling measure is.

In the Evolution Radar it is possible to use different time interval
combinations for the computation of the logical coupling and any
combination of the position-color mapping. For example we can
use the last year as time interval and map the resulting measure on
the position, while for the color we compute the logical coupling
considering the last month of the history of files.

3.2 Example
In the example Evolution Radar depicted in Figure 1 we see that

one module (MozillaSourceCommon marked as 1) in the lower half
of the radar has many files which are strongly coupled with the files
in the center module (MozillaSourceUnixOnly). As a result we can
say that these modules are strongly logically coupled.

Moreover, we see that the largest module (SeaMonkeyCore marked
as 2) contains many files (the sector is big), but only a few are log-
ically coupled with the center module. These files should be inves-
tigated to see whether they should be moved to the center module.

3.3 Logical Coupling Measure
We define the logical coupling between a filef and a moduleM as

the maximum logical coupling betweenf and all the files belonging
to M. The coupling between two files is defined as the number of
“shared commits” they have,i.e., the commits performed within a
fixed time window1. This approach can be improved using a sliding
time window as proposed by Zimmermannet al. in [19]. Using a
sliding time window the obtained set of shared commits is a super-
set of the one obtained using a fixed time window. Thus the results
found with our approach are still valid with the sliding time win-
dow, but with the latter it might be possible to find more of them.

To avoid outliers (files with a very high value of logical coupling
with respect to the average) to deform our visualization,i.e.,push-
ing all the other figures to the boundary, we use a percentage value.
We divide the number of shared commits by the average of the total
number of commits of the two files. However, the percentage mea-
sure does not weigh the logical coupling with the absolute number
of commits, implying that a file with 5 commits has the same value
of a file with 100 commits if they have the same number of shared
commits. A solution to this problem consists in multiplying the
logical coupling percentage value with the logarithm of the total
number of commits. Experiments with both the measures show that
even with the log scale some entities are displaced too much from

1We use a 200 seconds time window, as used in [19].

the center because of the outliers. Thus we choose the percentage
value as logical coupling measure, solving the problem using a sim-
ple query engine. It allows the user to select and/or remove from
the view all files having a number of commits below a given value.

3.4 Advantages
The Evolution Radar is interactive,i.e., the user can zoom in

on details, can select, inspect, remove single files,etc. to verify
hypotheses such as whether certain files should be moved from one
module to the other.

The Evolution Radar has several advantages regarding its visual
expressiveness: It is rotation invariant like Chuah’s time wheel vi-
sualizations [4]. It occupies a settable amount of screen space,i.e.,
it is always possible to visualize the whole radar on screen, inde-
pendent of its resolution. It does not visualize the coupling rela-
tionships as edges and therefore does not suffer from overplotting:
The radar always remains intelligible,i.e., it is easy to make out the
heavily coupled modules which are displayed as “spikes” pointing
to the center. It is also easy to make out single files responsible for
the coupling which are placed close to the center. The Evolution
Radar is applicable not only to modules, but also to any set of files.

4. MOZILLA EXPERIMENTS
The Evolution Radar helps in answering questions about the evo-

lution of a system which are useful to developers, analysts, and
project managers:

• Developerscan use the technique to answer the question: “If
I change this file, what others will I have to modify?”. The
Evolution Radar offers a visual way to assess the files that
might change in the future based on the prediction offered
by logical coupling. Due to the fine-grained level of the vi-
sualization, files can be inspected individually.

• Analysts and project managerscan use the Evolution Radar
to (i) understand the overall structure of the system in terms
of module dependencies, (ii) examine the structure of these
dependencies at the file granularity level and (iii) get an in-
sight of the impact of changes on a module over other mod-
ules. This knowledge will help them in (i) localizing where
refactorings should be applied, (ii) deciding whether certain
files should be moved to other modules, and (iii) understand-
ing the evolution of the logical coupling among modules.

In the remainder of this section we provide example scenarios of
applying the Evolution Radar technique on 30’000 source code files
in the Mozilla case study. For each example we mention which was
the goal of the analysis and the potential stakeholders. Throughout
the examples the color metric is the same as the distance metric
unless otherwise specified.

4.1 Understanding SeaMonkeyMailNews
Target Audience: Analysts, project managers.
Goals. (1) To understand the dependencies between a module and
all the other modules, (2) to understand the causes of these depen-
dencies, and (3) to get an insight on the impact of changes regarding
the target module.
Analysis. SeaMonkeyMailNews is a large module (1302 files)
with strong dependencies with all the other modules in the system,
especially with the largest module SeaMonkeyCore (7834 files).
Figure 2(a) shows the Evolution Radar of SeaMonkeyMailNews.
Many files are involved in the logical coupling between SeaMonk-
eyCore and SeaMonkeyMailNews. This information is useful but

28

(a) The Evolution Radar of the SeaMonkeyMailNews module. (b) The details of the logical coupling between
SeaMonkeyMailNews and SeaMonkeyCore.

Figure 2: Evolution Radars for SeaMonkeyMailNews.

(a) The Evolution Radar of the ThunderbirdTinderbox module. (b) The details of the logical coupling
between ThunderbirdTinderbox and the
rdf/chrome/src/* files.

Figure 3: Evolution Radars for ThunderbirdTinderbox.

still too coarse-grained. Thus we need to understand how the logi-
cal coupling is structured in terms of the individual files.

We refine the view of the logical coupling between modules by
selecting the files closest to the center that are marked as (1) in
Figure 2(a), and reapply the Evolution Radar for them. Now the
group of selected files belonging to SeaMonkeyCore plays the role
of the module in the center (represented as the cyan disc in Fig-

ure 2(b)), and the contents of SeaMonkeyMailNews, which was
the previous center module, are scattered around them. As we can
see from Figure 2(b) the logical coupling is due to the files marked
as 1. All these files belong to themailnews/db/mork direc-
tories tree, while the ones marked as 1 in Figure 2(a) belong to
db/mork . These two hierarchies should be further inspected and,
in case, merged and moved to the appropriate module.

29

(a) 3/28/1998 - 3/28/2000. (b) 3/28/2000 - 3/28/2002.

(c) 3/28/2002 - 3/28/2004. (d) 3/28/2004 - 1/9/2005.

Figure 4: The Evolution of the PhoenixTinderbox logical couplings.

4.2 ThunderbirdTinderbox Impact Analysis
Target Audience.Developers.
Goals. (1) To understand the change impact at the file level (i.e.,
answer the question: “If a file changes in this module, what other
files might have to change?”).
Analysis. ThunderbirdTinderbox is a small module (42 files) but it
has dependencies with most of the other Mozilla modules. As de-
velopers, we want the best candidates,i.e., the files which have not
only the strongest logical couplings but also the most recent ones.
We tackle the problem by creating an Evolution Radar view which
presents two types of logical coupling: (i) Coupling computed for
the whole history of the system and (ii) coupling computed for the
last 6 months only.

To present both types of information in the same figure we map
the logical coupling based on the history of the last 6 months on the
color of the discs representing files, while keeping the distance to
represent the logical coupling for the whole history. In Figure 3(a)

we can see three types of files:

• The files in group (3) are the most interesting, as they were
always, and especially during the last 6 months, changed to-
gether with some files of the ThunderbirdTinderbox module.

• For the files marked with (1), the logical coupling is weak
when computed for the whole history, but is strong when
computed considering only recent changes.

• For the files in group (2), the inverse holds, because the cou-
pling recently decreased (strong for the whole history, weak
for the last six months).

To continue the analysis, we focus our attention on the files in
group (3) only (all of which belong to therdf/chrome/src/
directory), because we want our candidate set to be small. We
build another Evolution Radar (Figure 3(b)) using the set of files

30

in group (3) as the reference point and with the files belonging to
the ThunderbirdTinderbox module scattered around it.

We find out that the logical coupling is due to two files only
(chrome/src/nsChromeURL.cpp and .h) in the Thunder-
birdTinderbox module. This means that if we want to modify the
nsChromeURL files, it is very likely that we have to modify the
files belonging to group 3 as well, while for all the other Thunder-
birdTinderbox files we don’t have this problem.

4.3 The Evolution of PhoenixTinderbox
Target Audience.Project managers, analysts.
Goals. (1) To obtain a high-level insight about the past evolution of
the logical coupling relationships of a certain module during devel-
opment phases, and (2) to understand whether the logical coupling
relationship of a module is “ameliorating” or “degrading”. It is de-
grading if the module is more and more logically coupled to the
others, leading to maintenance problems and suggesting refactor-
ing.
Analysis. The evolution of the logical coupling for the module
PhoenixTinderbox (depicted in Figure 4) shows that the module
went through diverse phases.

1. In the first phase from 1998 to 2000 it was decoupled from
most of the system modules except SeaMonkeyCore because
of the few files marked as (1).

2. Between 2000 and 2002 its architecture degraded since it be-
came more coupled with other modules, namely: SeaMon-
keyLayout, SeaMonkeyMailNews, SeaMonkeyBrowser, Sea-
MonkeyXPToolKit.

3. Between 2002 and 2004, possibly due to a restructuring phase,
most of the logical couplings were reduced but the co-depen-
dency with SeaMonkeyCore remained (marked as 1) and the
one with CoreTinderboxAll increased (marked as 2).

4. In the last phase the architecture degraded again since (i) the
dependencies with SeaMonkeyCore were reduced but still
remained, (ii) the logical coupling with SeaMonkeyLayout
became strong again and (iii) the dependencies with Sea-
MonkeyMailNews, CoreTinderboxAll and SeaMonkeyEdi-
tor were slightly increased.

5. RELATED WORK
Since Section 2 already introduced related work on logical cou-

pling, this section presents work related to software evolution visu-
alization.

A similar approach to visualize logical coupling has been pre-
sented by Pinzger et al. [14] with Kiviat Diagrams. As a differ-
ence they do not visualize file-level information but use surfaces
to depict complete releases, while in our visualization we depict
all evolving files in one diagram. Another difference is that they
represent the coupling as edges between the visible modules.

The graph based representation in which entities involved in log-
ical coupling were nodes in a graph and coupling was represented
as edges between them was used since the first publications related
to logical coupling [7, 8]. However, the problem with this repre-
sentation is that it either represents only modules, and then it is too
coarse grained, or it represents modules and files, but then it does
not scale to large systems.

A visual data-mining tool to represent both binary association
rules and n-ary association rules is EPOsee [3]. The tool adapts
standard visualization techniques for association rules to also dis-
play hierarchical information.

Chuah and Eick present a way to visualize project information
through glyphs called infobugs. Glyphs are graphical objects rep-
resenting data through visual parameters. Their infobug glyph’s
parts represent data about software [4]. The difference with respect
to our work is that they use glyphs to view project management
data, while our work focuses on describing how a module is log-
ically coupled to the others. One common advantage is that both
approaches are rotation invariant.

Lanza’s Evolution Matrix [12] visualizes the system’s history in
a matrix in which each row is the history of a class. A cell in the
Evolution Matrix represents a class and the dimensions of the cell
are given by evolutionary measurements computed on subsequent
versions. The evolution matrix does not represent any relationship
between the evolving entities.

Bayer [2] computes a co-change graph and proposes a layout
which reveals clusters of frequently co-changed artifacts. Jazayeri
et al. [11] visualizes software release histories using colors and the
third dimension. They do no visualize any coupling relationships
between modules.

Girba et al. used the notion of history to analyze how changes
appear in the software systems [9] and succeeded in visualizing the
histories of evolving class hierarchies [10].

Taylor and Munro [16] visualized CVS data with a technique
calledrevision towers. Ball and Eick [1] developed visualizations
for showing changes that appear in the source code.

Rysselberghe and Demeyer used a simple visualization based on
information in version control systems to provide an overview of
the evolution of systems [17].

Wu et al. described an Evolution Spectrograph [18] that visual-
izes historical sequences of software releases.

6. CONCLUSION
In this paper we have presented the Evolution Radar, a novel

approach to integrate and visualize module-level and file-level log-
ical coupling information. Unlike the previous visualizations in
this domain, our approach facilitates an in-depth analysis of logical
coupling between entities at different granularity levels. The visu-
alization is useful to answer questions about the evolution of the
system, the impact of changes at different levels of abstraction and
the need for system restructuring.

We have provided solutions for the problems mentioned in Sec-
tion 1: The Evolution Radar presents large amounts of information
in a condensed way (in the Mozilla examples the number of files
was greater than 30’000), guiding the user directly to the files re-
sponsible for the modules’ logical coupling. The interactive facil-
ities provided by our tool allow the user to inspect/filter entities of
interest, to group them and to create ad-hoc visualizations on the
fly.

As a case study, we have presented various scenarios of using our
visualization technique to support the analysis of more than seven
years of evolution of the Mozilla project.

6.1 Future Work
In the future we plan to explore the following research directions:
Structural information.We want to encapsulate structural infor-

mation like file size, number of methods, lines of code,etc. in the
Evolution Radar. The challenge in this is finding a way to encap-
sulate this data in the Radar layout without losing scalability and
readability.

Full integration in BugCrawler. In the current implementation
the Evolution Radar is an extension of BugCrawler [6]. By merg-
ing the two we will be able to navigate from the structural and evo-
lutionary views provided by BugCrawler to the Evolution Radar.

31

Sliding time window.We want to use the sliding time window
approach, instead of the fixed one, to compute the logical coupling
measure.

Bug-related information.We want to apply the same visualiza-
tion technique using the number of shared bugs as a measure for
the dependencies. Our hypothesis is that the greater the number of
bugs shared by two entities the stronger their dependency is. We
will check this hypothesis by comparing the results obtained using
the two measures (i.e., logical coupling and bug sharing).

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science foundation for the projects
“COSE - Controlling Software Evolution” (SNF Project No. 200021-
107584/1), and “NOREX - Network of Reengineering Expertise”
(SNF SCOPES Project No. IB7320-110997), and the Hasler Foun-
dation for the project “EvoSpaces - Multi-dimensional navigation
spaces for software evolution” (Hasler Foundation Project No. MMI
1976).

7. REFERENCES
[1] T. Ball and S. Eick. Software visualization in the large.IEEE

Computer, 29(4):33–43, 1996.
[2] D. Beyer and A. Noack. Clustering software artifacts based

on frequent common changes. InProceedings of the 13th
IEEE International Workshop on Program Comprehension
(IWPC 2005). IEEE Computer Society Press, Los
Alamitos (CA), 2005.

[3] M. Burch, S. Diehl, and P. Weissgerber. Visual data mining
in software archives. InSoftVis ’05: Proceedings of the 2005
ACM symposium on Software visualization, pages 37–46,
New York, NY, USA, 2005. ACM Press.

[4] M. C. Chuah and S. G. Eick. Information rich glyphs for
software management data.IEEE Computer Graphics and
Applications, 18(4):24–29, July 1998.

[5] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler.
A system for graph-based visualization of the evolution of
software. InProceedings of the 2003 ACM Symposium on
Software Visualization, pages 77–86, New York NY, 2003.
ACM Press.

[6] M. D’Ambros and M. Lanza. Software bugs and evolution:
A visual approach to uncover their relationships. In
Proceedings of CSMR 2006 (10th European Conference on
Software Maintenance and Reengineering), pages xxx–xxx.
IEEE CS Press, Mar. 2006.

[7] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. InProceedings
International Conference on Software Maintenance (ICSM
’98), pages 190–198, Los Alamitos CA, 1998. IEEE
Computer Society Press.

[8] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history
data for detecting logical couplings. InInternational
Workshop on Principles of Software Evolution (IWPSE
2003), pages 13–23, Los Alamitos CA, 2003. IEEE
Computer Society Press.

[9] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s Weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. InProceedings 20th IEEE
International Conference on Software Maintenance
(ICSM’04), pages 40–49, Los Alamitos CA, 2004. IEEE
Computer Society Press.

[10] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing the
evolution of class hierarchies. InProceedings Ninth

European Conference on Software Maintenance and
Reengineering (CSMR’05), pages 2–11, Los Alamitos CA,
2005. IEEE Computer Society.

[11] M. Jazayeri, H. Gall, and C. Riva. Visualizing Software
Release Histories: The Use of Color and Third Dimension.
In Proceedings of ICSM ’99 (International Conference on
Software Maintenance), pages 99–108. IEEE Computer
Society Press, 1999.

[12] M. Lanza. The evolution matrix: Recovering software
evolution using software visualization techniques. In
Proceedings of IWPSE 2001 (International Workshop on
Principles of Software Evolution), pages 37–42, 2001.

[13] M. Lehman and L. Belady.Program Evolution: Processes of
Software Change. London Academic Press, London, 1985.

[14] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing
multiple evolution metrics. InProceedings of SoftVis 2005
(2nd ACM Symposium on Software Visualization), pages
67–75, St. Louis, Missouri, USA, May 2005.

[15] J. Ratzinger, M. Fischer, and H. Gall. Improving evolvability
through refactoring. InMSR ’05: Proceedings of the 2005
international workshop on Mining software repositories,
pages 1–5, New York, NY, USA, 2005. ACM Press.

[16] C. Taylor and M. Munro. Revision towers. InProceedings
1st International Workshop on Visualizing Software for
Understanding and Analysis, pages 43–50, Los Alamitos
CA, 2002. IEEE Computer Society.

[17] F. Van Rysselberghe and S. Demeyer. Studying software
evolution information by visualizing the change history. In
Proceedings 20th IEEE International Conference on
Software Maintenance (ICSM ’04), pages 328–337, Los
Alamitos CA, Sept. 2004. IEEE Computer Society Press.

[18] J. Wu, R. Holt, and A. Hassan. Exploring software evolution
using spectrographs. InProceedings of 11th Working
Conference on Reverse Engineering (WCRE 2004), pages
80–89, Los Alamitos CA, Nov. 2004. IEEE Computer
Society Press.

[19] T. Zimmermann and P. Weißgerber. Preprocessing CVS data
for fine-grained analysis. InProceedings 1st International
Workshop on Mining Software Repositories (MSR 2004),
pages 2–6, Los Alamitos CA, 2004. IEEE Computer Society
Press.

[20] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In26th
International Conference on Software Engineering (ICSE
2004), pages 563–572, Los Alamitos CA, 2004. IEEE
Computer Society Press.

32

An Open Framework for CVS Repository
Querying, Analysis and Visualization

Lucian Voinea
Technische Universiteit Eindhoven
Postbus 513, 5600 MB Eindhoven

The Netherlands
Tel. +31402474344

l.voinea@tue.nl

Alexandru Telea
Technische Universiteit Eindhoven
Postbus 513, 5600 MB Eindhoven

The Netherlands
Tel. +31402474344

alext@win.tue.nl

ABSTRACT
We present an open framework for visual mining of CVS
software repositories. We address three aspects: data extraction,
analysis and visualization. We first discuss the challenges of CVS
data extraction and storage, and propose a flexible way to deal
with CVS implementation inconsistencies. We next present a new
technique to enrich the raw data with information about artifacts
showing similar evolution. Finally, we propose a visualization
backend and show its applicability on industry-size repositories.

Categories and Subject Descriptors
D.2.7 [Software engineering]: Distribution, Maintenance, and
Enhancement – documentation, reengineering; H.3.3
[Information Storage and Retrieval]: Information Search and
Retrieval – clustering, query formulation; I.3.8 [Computer
Graphics]: Applications

General Terms
Management, Measurement, Documentation

Keywords
Evolution visualization, software visualization, CVS repositories

1. INTRODUCTION
Software Configuration Management (SCM) systems are proven
instruments for managing large software development projects.
SCMs maintain a history of changes in the structure and contents
of the managed project. This information is very suitable for
empirical studies on software evolution.

Many SCM systems exist on the market, e.g. Subversion, Visual
SourceSafe, RCS, CMSynergy, ClearCase and CVS. The
Concurrent Versions System (CVS), available via the Open
Source community, is a very popular SCM system and has been
the preferred choice for SCM support in many Open Source

projects in the last decade. Many CVS repositories for long
evolution periods, e.g. 5-10 years, are freely available for
analysis, so CVS is an interesting option for research on software
evolution.

However, CVS is mainly designed for archiving data. CVS offers
only a basic querying interface for retrieving a given version of a
file or an attribute list with the file state evolution. CVS provides
no features to let users get data overviews easily. The user
feedback, i.e. state attributes list, is provided only in compiled
textual format, which makes it unhandy for quick browsing.

Another challenge of CVS-based software evolution research is
the data size and complexity. Raw repository information is too
large and provides directly just limited insight in the evolution of
a software project. Extra analysis is needed to process these data
and extract relevant evolution features.

In this paper we address the challenges of software evolution
assessment in CVS repositories. We propose an open framework
for CVS data extraction and analysis. We illustrate the
capabilities of this framework with a customized implementation.
The basic questions we try to answer are:

- How to deal with the large size of CVS data and various
limitations of textual feedback?

- How to extract logical coupling information from
evolution?

- How to efficiently present evolution data to users to enable
correlations across entire projects?

The structure of this paper is as follows. In section 2 we review
existing CVS data extraction methods and software evolution
analysis techniques. Section 3 presents our flexible interface with
CVS repositories. Section 4 describes a new clustering technique
for detecting logical coupling of files based on evolution
similarity. Section 5 describes a visual back-end for evolution
assessment and shows it at work on large repositories. Section 6
summarizes our contribution and outlines open issues for future
research.

2. BACKGROUND
The huge potential of the data stored in SCMs for empirical
studies on software evolution has been recently acknowledged.
The growth in popularity and use of SCM systems, e.g. the open
source CVS [5] and Subversion [15], opened new ways for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

33

project accounting, auditing and understanding. These efforts can
be grouped in two directions: data mining and data visualization.

Data mining focuses on processing and extracting relevant
information from SCM systems. SCM systems have not been
designed to support empirical studies, so they often lack direct
access to high-level, aggregated evolution information. Hence,
information is distilled from the “raw” stored data by data mining
tools, as follows. Fischer et al. [7] extend the SCM evolution data
with information on file merge points. Gall [9] and German [10]
use transaction recovery methods based on fixed time windows.
Zimmermann and Weißgerber [21] extended this work with
sliding windows and facts mined from commit e-mails. Ball
analyzes class-cohesion using a mined probability of classes
being modified together [1]. Bieman et al. [2] and Gall et al. [9]
also mine relations between classes based on change similarities.
Ying et al. [20] and Zimmermann et al. [21][21] address relations
between finer-grained artifacts, e.g. functions. Lopez-Fernandez
et al. [13] apply general social network analysis methods on SCM
data to assess the similarity and development process of large
projects.

Data visualization, the second research direction, takes a different
path, focusing on making the large mass of evolution information
effectively available to users. Visualization methods make few
assumptions on the data – the goal is to let users discover patterns
and trends rather than coding these in the mining process. SeeSoft
[6], a line-based code visualization tool, uses color to show code
snippets matching given modification requests. Augur [8] visually
combines project artifact and activity data at a given moment. Xia
[19] uses treemap layouts for software structure, colored to show
evolution metrics, e.g. time and author of last commit and number
of changes. Such tools successfully show the structure of software
systems and the change dependencies at given moments. Yet, they
don’t give insight into code attributes and structure changes made
throughout an entire project. A first step in this direction, UNIX’s
gdiff and Windows’ WinDiff display code differences between
two versions of a file by showing line insertions, deletions, and
edits computed by the diff tool. Still, such tools cannot show
the evolution of thousands of files and hundreds of versions. To
overcome these shortcomings, Collberg et al. [4] depicts the
evolution of software structures and mechanisms as a sequence of
graphs, for medium-size projects. Lanza [12] depicts the evolution
of object-oriented software systems at class level. Wu et al. [18]
visualize the evolution of entire projects at file level and
emphasize the evolution moments. Finally, our own work
provided software evolution visualizations at several granularity
levels: CVSscan [16] for the line-level evolution of a few source
code files and CVSgrab [17] for file-level, project-wide evolution
investigations.

Data extraction is a less detailed aspect of software evolution
analysis. Many works extract data from CVS repositories, e.g
[21], [7], [9], [11], [20], [13], [16], and [17]. Yet, a standard
framework for CVS data extraction still lacks. Two main
challenges exist here: data retrieval and CVS output parsing. The
huge amount of data in CVS repositories is usually available over
the Internet. On-the-fly retrieval is not suited for interactive
assessment, given the sheer data size. Storing data locally requires
long acquisition times, large storage space, and consistency
checks. Next, CVS output is ill suited for machine reading. Many
CVS systems use ambiguous or nonstandard output formats.

Attempts to address these problems exist, but are incomplete.
Libraries exist that offer an application interface (API) to CVS,
e.g. Java’s javacvs or Perl’s libcvs. However, javacvs is basically
undocumented. Libcvs handles only local repositories. The
Eclipse environment offers a CVS client implementation but not
an API. The Bonsai project [3] offers several tools to populate a
database with evolution data obtained from CVS repositories.
These tools are mainly meant as a web data access package and
are little documented. The best supported effort for CVS data
acquisition is the NetBeans javacvs package [14], a well-
documented API with allegedly full CVS client support that
parses CVS output into API-level data structures. SoftChange
[11] was a first attempt for a coherent environment to support the
comparison of Open Source projects, targeting CVS, project
mailing lists, and bug report databases. It focuses mainly on data
extraction and analysis, aiming to be a generic foundation for
building evolution visualization tools.

Overall, several tools exist, each addressing different, though
overlapping, facets of software evolution analysis (see Table 1).

Table 1: Tools and methods overview

Tool Query Analysis
Visualization
Libcvs X

javacvs X

Bonsai [3] X

Eclipse CVS plugin X

NetBeans.javacvs [14] X

Release History Database [7] X X

Diff X

WinDiff X X

eRose [21] X X

QCR [9] X

Social Network Analysis [13] X

SeeSoft [6] X

Augur [8] X X

Gevol [4] X

CodeCrawler [12] X

Evolution Spectograph [18] X X

CVSscan [16] X X

CVSgrab [17] X X

Xia [19] X X

SoftChange [11] X X X

We propose a new approach towards an integrated framework for
CVS data extraction, analysis and visualization. Our goal is
twofold. First, we aim to provide users with a complete software
evolution analysis chain. Secondly, we aim at building an
experimenting foundation for research at all levels, i.e. extraction,
analysis, and visualization. Our approach is described next.

34

3. CVS QUERYING
CVS data extraction is a main problem for research on software
evolution. The CVS Internet protocol unfortunately covers only
the main CVS function, i.e. file archiving. The CVS navigation
commands do not have a machine-readable output. Navigation
feedback is given in a compiled text format that is not always
easy to decipher. Often, parse tools for this output fail to work on
some repositories due to awkward local conventions, e.g. “date
format is yyyy-mm-dd and not dd/mm/yyyy” or “file names may
contain spaces”. This makes uniform access to CVS data difficult.
In such cases, one usually searches a parser that copes with the
output format at hand and tries to add it to the experimental setup.
We propose an approach towards CVS data acquisition that
simplifies this process using a data acquisition mediator (see
Figure 1).

CVS
 client

CVS
Repository

CVS
format

converter

CVS
output parser

CVS
Data

Analysis

CVS
output parser

CVS
client proxy

(cached
standard output)

CVS data acquisition mediator

Existing CVS data acquisition system

Figure 1: CVS data extractor with output format mediator
The mediator is an easy-to-customize preprocessor between CVS
repositories and existing data acquisition tools. When format
inconsistencies occur between the CVS output and a parser, we
don’t need a new CVS data acquisition tool. Instead, we adapt the
mediator with a simple rule to transform the new format into the
one accepted by the tool. While this doesn’t completely remove
the problems of inconsistent output formatting, it is a flexible way
to solve problems without removing the preferred data acquisition
tool. We developed an open source, easy to customize mediator,
in a simple to use programming language: python. Secondly, the
mediator provides data access to CVS repositories and can also be
easily integrated in projects that lack a data acquisition tool. The
mediator offers selective access to CVS repositories, i.e. retrieves
only information about a desired folder or file, and also caches the
retrieved information locally. This design lets one control the
trade-off between latency, bandwidth and storage space in the
data acquisition step as desired.

4. DATA ANALYSIS
Raw CVS data is too large and low-level to provide insight in the
evolution of software projects. Extra analysis is needed to extract
relevant evolution aspects. An interesting analysis use-case is to
identify artifacts that have similar evolution. Several approaches
exist for this [2], [9], [21], [20]. They all use similarity measures
based on recovered CVS transactions, i.e. sets of files committed
by a user at some moment. The assumption is that related files
have a similar evolution pattern, and thus their revisions will often
share the same CVS transaction. This information about

correlated files is used to predict future changes in the analyzed
system, from the perspective of a given artifact.
We propose a more general approach. We argue that not
transactions, but pure commit moments, are important for finding
similar files. Transaction-based similarity measures fail to
correlate files developed by different authors and with different
comments attached, but which are still highly coupled. To handle
such cases, we propose a similarity measure using the time
distance between commit moments. If { }NitS i ..| 11 == are the
commit moments for a file F1 and { }MjtS j ..| 12 == the commit

moments for F2, we define the similarity between F1 and F2 as the
symmetric sum:

() { }

{ }∑

∑

=

=

+<−∈−

+
+<−∈−

=Φ

M

j ijiij

N

i jijji

kttSttt

kttSttt
FF

1 1

1 2

21

1

1

1

1

,|min

,|min
,

where k is a customizable neighborhood factor intended to reduce
the influence of completely unrelated events on the similarity
measure. The square root is meant to attenuate the influence of
the network latency on the CVS transaction. Intuitively, this
measure considers, for each commit moment of F1, the closest
commit moment from F2, weighted by the inverse time distance
between the two moments. We next use this measure in an
agglomerative clustering algorithm to group files that have a
similar evolution, yielding a logical system decomposition
following similar evolution patterns. We make the analysis data
available for any evolution assessment back-end by storing it in a
flat file database.

5. VISUALIZATION
Visualization tries to give insight in these large and complex CVS
data by delegating the pattern detection and correlation making to
the human visual system. Visualization can also present the
results of data analysis in an intuitive, ready-to-use, way.
Visualization is a main ingredient of our CVS repository mining
framework.
The data acquisition (Sec. 3) and analysis (Sec. 4) steps are
generic and can be used with any visualization back-end. We
present now a methodology for quick visual assessment of data
analysis results and illustrate its applicability with several use
cases. For this, we use the CVSgrab tool, detailed in [17].
CVSgrab visualizes project evolution at file level. It depicts each
project as a set of horizontal strips representing files along the
time axis (Figure 2).

Time

Files

V1 V2 V3 V4 F1
F2

F3
F4

Color encodes version
based file metrics

Figure 2: CVSgrab visualization of project evolution

35

The file layout along the vertical axis is interactively constructed
to suit specific analysis needs. Plateau cushions are used to
highlight groups of files that have a similar evolution [17].
CVSgrab uses a generic mechanism to map file-level attributes to
colors. We next discuss the use of CVSgrab as visualization back-
end in our proposed open framework by assessing the evolution of
several file metrics on real-life, industry-size CVS repositories.
Figure 3 shows the evolution of ArgoUML, an object-oriented
design tool with a 6-year evolution of 4452 files developed by 37
authors. To analyze the evolution of ArgoUML using the
framework described in this paper, we coupled the CVS data
acquisition mediator to the CVSgrab back-end and used the
standard CVS client to access the ArgoUML repository over the
Internet. Data acquisition took 31 minutes over a T1 Internet
connection: 8 minutes for the initial setup (i.e. one-time retrieval
of the last version of 56MB) and 23 minutes to retrieve the
evolution data to be visualized (29MB).

In Figure 3, a 12-snapshot matrix shows ArgoUML’s evolution.
Each column shows the evolution of one metric:
- Column 1 shows the development team evolution. Each file

version color shows the ID of the user who committed it.
- Column 2 shows the size evolution of contributions as number

of lines. Files that are first committed are colored gray. Blue
shows file size increase, red is decrease, and yellow is a
commit that affects several lines but does not modify the file
size. While hue encodes the type of change in size, brightness
encodes the change size: lighter colors denote smaller
changes, darker colors denote more modifications.

- Column 3 shows the file type: red for java source files, green
for images, and yellow for HTML files.

- Column 4 highlights versions that contain given strings in
their associated commit comment: green for versions that
contain the word “fix”, blue for versions that contain the word
“error”.

1: team evolution 2: size evolution 3: file type evolution 4: search evolution

S
or

t b
y

cr
ea

tio
n

tim
e

S
or

t b
y

ac
tiv

ity

A

B

C

S
or

t a
lp

ha
be

tic
al

ly

1 2

1 1

1

2 2

2

Figure 3: ArgoUML metrics evolution visualization with CVSgrab

Each row in Figure 3 uses another layout offered by CVSgrab. In
row A, files are sorted alphabetically on their full path, and thus
show the folder structure. In row B, files are sorted from top to
bottom in decreasing order of number of versions, i.e. file
activity. Files that have the same number of versions are further
sorted in decreasing order of creation time. In row C, files are
sorted in decreasing order of creation time. Files created in the
beginning of the project are at the bottom, while ‘young’ files are
at the top.

By assessing the project evolution shown in Figure 3, one can
discover several interesting aspects of the process and
organization of ArgoUML. Cell C3 shows that the project started
with a documentation base (i.e. green and yellow) that probably
contained the system specification. This was contributed by one
user (jrobbins = brown in C1) and remained unchanged for the
entire project duration except for a large addition (dark blue in
C2) done by another user two years later (dennyd = red in C1).
The added code concerned seemingly an underspecified issue as it
was extend again two years later (dark blue in C2) by another

36

author (mvw = cyan in C1). The real implementation first
appeared 6 months after the specification was committed (java
source files = red in C3) and was contributed by one author
(1sturm = blue in C1). Two years from the project start, another
big documentation chunk was added (yellow and green in C3) by
one user (jeremybennett = yellow in C1). Although both the
specification, implementation, and documentation parts appear to
be the work of one author each, it is intriguing the fact they were
all committed at one time (i.e. not incrementally), by one author,
and contained many files, i.e. approx. 400. It is thus possible that
these represent the work of more people, which was first checked
in by one single person. For the rest of the project, one user has a
significant contribution (linus = green in C1), with one exception
in the fifth project year (mvw = cyan in C1). The large oval (1) in
A1 shows that mvw (cyan in A1) made a significant contribution
(dark blue, large oval (1) in A2) to the implementation (red in
A3). The same pattern can be recognized following the large
ovals (1) in B1 and B2. A3 shows that the project has a very clean
organization. The major color groups correspond to the folders
documentation (green at the top), src_new (red at the middle) and
www (yellow and green at the bottom). From B3, one can see that
most activity during the project was related, as expected, to

changes in the implementation files (red at the top) followed by
changes in the documentation (yellow in the middle) and in the
documentation images (green at the bottom). B2 shows that
almost one-third of the files added during the project did not
change during all six years (since they are grey). Most such files
contain documentation (i.e. yellow and green in B3). To this
group belongs also the largest part of the previously identified
system specification (i.e. brown in B1, by correlation with C1 and
C3). Another interesting aspect is shown in the small ovals (2) in
A1 and A4. It seems that in the fourth project year linus made a
significant contribution, not in terms of size (i.e. no significant
size change pattern detected in A2) but in terms of code cleaning.
Many implementation files (red in A3) containing the words “fix”
and “error” in their revision comment have been committed by
linus to the repository. The same pattern can be seen in row B.
The large green (i.e. “fix”) horizontal pattern that can be seen in
column 4 corresponds to an initial checkout of documentation
files. It suggests that previous work has been done in that area
without being committed. Figure 3 shows also that almost no
significant decrease took place in the project size. One exception,
highlighted in C2, shows a size drop for documentation files
(yellow in C3) that occurred at the end of the fourth project year.

1: team evolution 2: size evolution 3: file type evolution 4: search evolution

S
or

t b
y

cr
ea

tio
n

tim
e

S
or

t b
y

ac
tiv

ity

A

B

C

S
or

t a
lp

ha
be

tic
al

ly

1

1
2

2

2

3

3
3

Figure 4: PostgreSQL metrics evolution visualization with CVSgrab

Figure 4 gives another example of CVS evolution visualization
done using our proposed framework. It shows the evolution of
PostgreSQL, an object-relational database management system
project with a history of 10 years, 2829 files, and 27 authors. We

used the same framework setup as in the previous example. The
data acquisition step took 28 minutes: 7 minutes for the initial
setup (i.e. one time retrieval of the last project version = 56MB)
and 21 minutes for retrieving the evolution information to be

37

visualized (29MB). The evolution retrieving time was in this case
smaller than in the first example, even if more data was retrieved.
This is explained by the connection overhead. When retrieving
evolution data, the connection has to be established for each file.
In this case the number of files was less than in the first example,
which significantly improved the overall connection latency.
Figure 4 shows 12-snapshot matrix illustrating the evolution of
PostgreSQL, structured similarly to Figure 3. Columns show the
development team (1), size evolution (2), file type (3) and string
search (4) encoded by colors, just as in example 1, except for file
type and string search. In column 3, C source files are blue, light
C headers are light green, SGML documentation files are normal
green, SQL files are pink, and test support files are red. In column
4, green shows versions that contain the word “fix” in their
associated commit comment, and red versions that contain the
word “bug”. As in the first example, the matrix rows use different
sortings for arranging files on the vertical axis: alphabetical order
(A), number of revisions (B) and creation time (C).
Assessing the evolution information depicted in Figure 4 one can
compare the evolution of PostgreSQL with the one of ArgoUML
presented in the first example, as follows. Cell C3 shows that the
project started with a source code base (i.e. blue at the bottom)
and not with a specification, as for ArgoUML. Even the header
files containing interfaces were not fixed until a couple of months
later (light green). As for ArgoUML, the initial contribution to
the repository (C source and headers) was performed by one
person (scrappy = red in C1) and incorporated many files (approx.
400). This suggests that previous developments existed that were
not recorded in CVS. The rest of the evolution appears to be
mainly the contribution of a few authors: momjian (light green),
tgl (dark blue), pgsql (magenta), petere (cyan), thomas (yellow-
greenish). The contributions of momjian and tgl are interleaved at
periods of around 6-8 months (column 1) and address the most
active parts of the system (B1). These parts correspond to the
implementation files (i.e. C source code and headers), by
correlation via A1 and A3. These parts are also targeted by pgsql
in the last two project years. A detailed look at B1 and B2 reveals
the contribution patterns of momjian and tgl. The versions

committed by momjian do not usually bring changes in files sizes
(i.e. they are yellow in B2) and are relatively done at large
intervals. In contrast to this, the contributions of tgl are done at
smaller intervals and cause often changes in the file size.
Moreover, the contributions of momjian “interrupt” abruptly the
ones of tgl but not conversely. This suggests the real work might
be done by tgl while momjian has more the role of a code
standard manager. A more in-depth investigation of the evolution
using the details-on-demand mechanism of CVSgrab showed that
the modifications done by momjian addressed mainly changes in
indentation and copyright texts. A similar pattern holds for pqsql.
Finally, petere and thomas appeared to have mainly contributed to
the system documentation (by correlating A1 and A3). As for
ArgoUML, PostgreSQL seems to have a clean organization (A3):
Source, header, documentation, and test files are well separated.
Most of the activity takes place in the implementation files. Not
only C files are modified but also headers and documentation
files, which could suggest frequent architectural changes. No
significant size modifications are registered throughout the
project. The only exceptions, (1) highlighted in A2, address the
documentation part of the project. Finally, column 4 in Figure 4
shows the distribution of the words “fix” and “bug” along the
project evolution. The green patterns (2) highlighted in the image
correspond to versions containing the word “fix”. By correlating
C3, C4 and C1, it seems that these patterns match header files in
versions committed by momjian. Hence, it is possible they do not
address important changes for the system functionality. Indeed, a
more detailed analysis revealed that the word “fix” refers actually
to a version of an indentation program used to format the text and
not to the system code itself! Other occurrences of the word “fix”
are evenly distributed largely over the evolution of C source files
(A4). The red patterns (3) highlighted in A4 and C4 correspond to
versions containing the word “bug”. They correspond to test files
and appear towards the file creation moment. This, together with
the fact that test files are created relatively early in the project,
suggests an active test policy. The rest of the occurrences of the
word “bug” are evenly distributed, mostly along the evolution of
C source files.

M
ain clusters

a

b

c

d

e

1: word distribution 2: size evolution 3: file author 4: file type
Figure 5: PostgreSQL evolution clusters visualization with CVSgrab

Figure 5 visualizes PostgreSQL evolution enriched with data
analysis about clusters of files with common evolution. Four
CVSgrab snapshots are presented. Clusters are encoded using
plateau cushions. In each cluster, files are sorted in decreasing
order of their creation time, from top to bottom. Color shows
different file metrics: word distribution (1), size evolution (2), file

author (3) and file type (4), as in Figure 4. There are mainly five
important evolution groups. In column 4, one can see three main
groups: source files (a,b,c), documentation (d), and test scenario
files (e). We can easily see that source files introduced in the
beginning of the project have a similar evolution (b). Hence, they
may refer to a part of the system that has a high logical coupling

38

and can be seen as a building block. The same holds for the other
two clusters containing source code (a, c). All building blocks
share the same developer network (3) and size evolution patterns
(2). The block corresponding to the early introduced source code
(b) has, however, a higher density of versions with comments
containing the word “bug” (highlighted in 1). Hence, this block
may contain a problematic implementation. Documentation forms
a separate cluster (d), leading to the conclusion that it mainly
targets the functionality of the system and not its detailed design,
as it doesn’t change in sync with the headers. Finally, the large
cluster at the bottom of the images (e) corresponds to a
miscellaneous collection of files including test scenarios. This
cluster may thus refer to files intended to support the development
process, rather than implementing real functionality.
Changing the cluster granularity level, one can further split the
clusters presented above for a finer analysis of the system. This
can be useful not only for performing a logical decomposition, but
also for predicting future changes with different levels of
confidence.

6. CONCLUSIONS
In this paper we propose a new framework for visual data mining
of CVS software repositories. Our goal is twofold. On the one
hand we aim to provide the research community with a base for
experimentation of new techniques in data acquisition, analysis
and visualization. On the other hand, we want to increase the
framework acceptance by making it immediately available to the
end users for CVS repository mining.

To achieve the first goal we propose a mediator module for CVS
data acquisition that can easily integrate with current data
extraction systems. The role of this module is to facilitate the
resolution of CVS format incompatibility problems without
requiring the modification / replacement of the data acquisition
module. Secondly, we propose a new approach for quick
visualization of data analysis results using the generic metric
visualization mechanism of CVSgrab [17].

To make the framework immediately available to end users, we
integrate the CVS mediator with a reference implementation of a
data extraction tool. Additionally, we propose a new technique for
identifying clusters of files with similar evolution. This could help
users both to perform a logical decomposition of the system, and
to predict future changes in the system from the perspective of
select files. We integrate this technique as a data analysis module
in the proposed framework, and we use CVSgrab [17] as
visualization backend. Finally we illustrate the functionality of
the integrated framework by visually mining the evolution of two
industry-size Open Source projects: ArgoUML and PostgreSQL.
The two cases demonstrate the framework has affordable time,
bandwidth, and storage requirements for data acquisition.
Additionally, it enables users to easily make complex evolution
assessments by correlating evolution of multiple file metrics.

As a future direction of research we would like to improve the
similarity measure of the evolution clustering mechanism by
using additional attributes, e.g. file type, author. The challenge in
this direction is to find the best similarity description that matches
a given user requirement. Additionally, we would like to extend
the framework with other generic visualization mechanisms, for
easy assessment of data analysis techniques.

7. REFERENCES
[1] Ball, T., Kim, J.-M., Porter, A.A., and Siy, H.P. If your version

control system could talk. ICSE’97 Workshop on Process Modelling
and Empirical Studies of Software Engineering, May 1997.
http://research.microsoft.com/~tball/papers/icse97-decay.pdf

[2] Bieman, J. M., Andrews, A. A., and Yang, H. J. Understanding
change-proneness in OO software through visualization. Proc. Intl.
Workshop on Program Comprehension, IEEE Press, 2003, pp. 44–53

[3] Bonsai online: http://www.mozilla.org/projects/bonsai/
[4] Collberg, C., Kobourov, S., Nagra, J., Pitts, J., and Wampler, K. A

System for Graph-Based Visualization of the Evolution of Software.
Proc. ACM SoftVis‘03, ACM Press, 2003, pp. 77–86

[5] CVS online: http://www.nongnu.org/cvs/
[6] Eick, S.G., Steffen, J.L., and Sumner, E.E. Seesoft - A Tool For

Visualizing Line Oriented Software Statistics. IEEE Trans. on
Software Engineering, 18:11, IEEE Press, 1992, pp. 957– 968

[7] Fischer, M., Pinzger, M., and Gall, H. Populating a Release History
Database from version control and bug tracking systems. Proc. Intl.
Conf. on Software Maintenance, IEEE Press, 2003, pp. 23–32

[8] Froehlich, J., and Dourish, P., Unifying Artifacts and Activities in a
Visual Tool for Distributed Software Development Teams. Proc.
ICSE‘04, IEEE Press, 2004, pp.387–396

[9] Gall, H., Jazayeri, M., and Krajewski, J. CVS release history data for
detecting logical couplings. Proc. IWPSE’03, IEEE Press, 2003, pp.
13–23

[10] German, D., and Mockus, A. Automating the measurement of open
source projects. ICSE '03 Workshop on Open Source Software
Engineering, Automating the Measurement of Open Source Projects,
http://www.research.avayalabs.com/user/audris/papers/oose03.pdf

[11] German, D., Hindle, A., and Jordan, N. Visualizing the evolution of
software using softchange. In Proc. Intl .Conference on Software
Engineering and Knowledge Engineering (SEKE’04), pp. 336–341

[12] Lanza, M. The evolution matix: Recovering software evolution using
software visualization techniques. In Proc. Intl. Workshop on
Principles of Software Evolution, ACM Press, 2001, pp. 37–42

[13] Lopez-Fernandez, L., Robles, G., and Gonzalez-Barahona, J.M.
Applying Social Network Analysis to the Information in CVS
Repositories. Intl. Workshop on Mining Software Repositories
(MSR), 2004, http://opensource.mit.edu/papers/llopez-sna-short.pdf

[14] NetBeans.javacvs online: http://javacvs.netbeans.org/
[15] Subversion online: http://subversion.tigris.org/
[16] Voinea, L., Telea, A., and van Wijk, J.J. CVSscan: Visualization of

code evolution. Proc. ACM SoftVis, ACM Press, 2005, pp. 47 – 56
[17] Voinea, L., and Telea, A. CVSgrab: Mining the History of Large

Software Projects. Proc. EuroVis’06, IEEE Press, 2006.
[18] Wu, K., Spitzer, C.W., Hassan, A.E., and Holt, R.C. Evolution

Spectrographs: Visualizing Punctuated Change in Software
Evolution. In Proc. Intl. Workshop on Principles of Software
Evolution (IWPSE'04), IEEE Press, 2004, pp. 57-66

[19] Wu, X. Visualization of version control information. Master’s thesis,
University of Victoria, 2003.

[20] Ying, A.T.T., Murphy, G.C., Ng, R., Chu-Carroll, M.C., Predicting
Source Code Changes by Mining Revision History. IEEE Trans. on
Software Engineering, 30:9, IEEE Press, 2004, pp. 574-586

[21] Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A., Mining
version histories to guide software changes. Proc. Intl. Conference
on Software Engineering (ICSE), IEEE Press, 2004, pp. 429–445

[22] Zimmermann, T., Weißgerber, P., Preprocessing CVS Data for Fine-
grained Analysis. Intl. Workshop on Mining Software Repositories
(MSR), May 2004,
http://www.st.cs.uni-sb.de/papers/msr2004/msr2004.pdf

39

Micro Pattern Evolution
Sunghun Kim

Department of Computer Science
University of California, Santa Cruz

Santa Cruz, CA, USA
hunkim@cs.ucsc.edu

Kai Pan
Department of Computer Science

University of California, Santa Cruz
Santa Cruz, CA, USA

pankai@cs.ucsc.edu

E. James Whitehead, Jr.
Department of Computer Science

University of California, Santa Cruz
Santa Cruz, CA, USA
ejw@cs.ucsc.edu

ABSTRACT
When analyzing the evolution history of a software project, we
wish to develop results that generalize across projects. One
approach is to analyze design patterns, permitting characteristics
of the evolution to be associated with patterns, instead of source
code. Traditional design patterns are generally not amenable to
reliable automatic extraction from source code, yet automation
is crucial for scalable evolution analysis. Instead, we analyze
“micro pattern” evolution; patterns whose abstraction level is
closer to source code, and designed to be automatically
extractable from Java source code or bytecode. We perform
micro-pattern evolution analysis on three open source projects,
ArgoUML, Columba, and jEdit to identify micro pattern
frequencies, common kinds of pattern evolution, and bug-prone
patterns. In all analyzed projects, we found that the micro
patterns of Java classes do not change often. Common bug-
prone pattern evolution kinds are ‘Pool → Pool’, ‘Implementor
→ NONE’, and ‘Sampler → Sampler’. Among all pattern
evolution kinds, ‘Box’, ‘CompoundBox’, ‘Pool’,
‘CommonState’, and ‘Outline’ micro patterns have high bug
rates, but they have low frequencies and a small number of
changes. The pattern evolution kinds that are bug-prone are
somewhat similar across projects. The bug-prone pattern
evolution kinds of two different periods of the same project are
almost identical.
Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Restructuring, reverse engineering, and
reengineering, D.2.8 [Software Engineering]: Metrics –
Product metrics, K.6.3 [Management of Computing and
Information Systems]: Software Management – Software
maintenance

General Terms
Algorithms, Measurement, Experimentation

1. INTRODUCTION
Software evolution research examines the development history
of a software project to learn facts about the software, and better
understand its qualities. After examining the history of many
different software projects, ideally we would like to be able to
make claims like, if we observe evolution pattern X, then the
consequences for one or more software qualities are Y and Z.

Most software repository mining research examines software by
subdividing it into parts using physical distinctions, such as
modules, directories, files, and methods. Researchers examine
the evolution of these physical elements, and then correlate
various software properties with traits of the observed evolution.
For example, researchers have examined revision histories to
determine correlations between changes and bugs [13]. Though
there has been much success in correlating software properties
with the evolution of physical elements within a project, the
ability to apply these results to other projects has been limited.
This is due to the use of the software’s existing physical
distinctions, which limits the applicability of results to just a
single project. Knowing something about the evolution of the
methods in a specific Java class does not typically provide any
insight into other classes, since different classes have different
source code.

To make more generalizable observations requires some means
for abstracting away from the physical elements into abstract
categories. These categories need to be concrete enough to
capture important aspects of the behavior of the software, yet
sufficiently general that one can observe the same abstract
categories across multiple projects. The classic software design
patterns [6] fit this description, and suggest the possibility that
we can deeply understand the evolutionary behavior of specific
design patterns. To perform such analysis in a scalable way, we
need an automated mechanism for extracting software design
patterns from source code. Unfortunately, to date there is no
accurate mechanism for identifying design patterns in code, with
existing approaches suffering from large amounts of false
positives or false negatives.

Recent work by Gil and Maman has introduced the concept of
micro patterns [7], which are “Java class-level traceable
patterns.” These are more fine-grained design patterns than the
classic patterns, and have been designed to always be
automatically extractable from source code (or bytecode). Micro
patterns express more fine-grained design idioms than classic
patterns. For our purposes, what is important is that we now
have a reliable, automatic way to extract a set of general design
abstractions from Java projects. This now allows us to explore
whether evolution characteristics can be correlated with the
abstractions inherent in these micro patterns, and make
generalizable conclusions about specific evolution patterns.

In this paper we analyze the micro pattern evolution of three
open source projects, ArgoUML, Columba, and JEdit, shown in
Table 1. Our goal in doing so is to examine whether there are
any correlations between the evolution of micro patterns and the
likelihood of having bugs. Ideally we wish to identify micro
pattern evolution kinds that are consistently fault prone across
projects, and hence allow us to make general conclusions about
this kind of evolution that have broad applicability.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR ’06, May 22-23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

40

Table 1. Analyzed projects, ArgoUML, Columba, and jEdit. # of revisions is the number of revisions we analyzed. # of class changes
indicates the number of corresponding source code (Java) changes. # of bug changes indicates the number of changes that introduce bugs

identified by mining change logs and SCM history [13]. % of bug rate is the rate of bug-introducing changes over all changes.

Project Software type Period # of revision # of class changes # of bug class changes % of bug rate
ArgoUML UML design tool 01/2002 ~ 03/2003 1,262 4,179 1,245 29.8
Columba Email Client 11/2002 ~ 01/2006 1,652 11,138 1,604 14.4
jEdit Editor 09/2001 ~ 01/2006 1,449 5,526 2,456 44.5

After examining the micro pattern evolution history of the three
open source projects, we found that micro patterns do not
typically change when a class file changes. For example, the
most common pattern evolution kinds are ‘Limited Self →
Limited Self’, ‘Implementor → Implementor’, and ‘Sink →
Sink’ (these micro patterns are briefly described in Section 2). In
all these cases the micro pattern is the same before and after the
class change. Only 4-6% of class file changes cause micro
pattern changes, examples being ‘Implementor → NONE’ and
‘Stateless → RestrictedCreation’.

For each project we identified the micro pattern kinds that were
most bug-prone. We additionally found the most bug-prone
pattern evolution kinds of the three projects, and found that they
are somewhat similar. Furthermore, we observed that the bug-
prone evolution kinds for two different periods of the same
project are almost identical. For example, micro pattern
evolution kinds such as ‘Pool → Pool’, ‘Implementor →
NONE’, and ‘Sampler → Sampler’ are bug-prone in jEdit. We
found that ‘Box’, ‘CompoundBox’, ‘Pool’, ‘CommonState’, and
‘Outline’ micro patterns have high bug rates, but they have low
frequencies and a small number of changes. In contrast,
‘Overrider’ and ‘Sink’ micro patterns have relatively lower bug
rates.

We anticipate that these findings can be used by software quality
engineers to identify areas of a software project that are more
bug-prone, and apply more testing and verification resources to
those areas. We could also make software developers aware that
they are working on a bug-prone pattern, or kind of pattern
transition, and thereby encourage more defensive coding and
more extensive unit testing.

In the remainder of the paper, we explain micro patterns
(Section 2) and describe our experimental setup (Section 3).
Following are results from our experiments (Section 4), along
with discussion of the results (Section 5). Rounding off the
paper, we end with related work (Section 6) and conclusions
(Section 7).

2. JAVA MICRO PATTERNS
Micro patterns capture idioms of Java programming languages
such as the use of inheritance, immutability, data wrapping, data
management, and modularity [7]. Micro patterns include Box,
Compound Box, Sampler, Canopy, Immutable, Implementor,
Pseudo Class, Pool, Restricted Creation, Overrider, Sink,
Stateless, Common State, Outline, Function Pointer, Function
Object, Joiner, Designator, Record, Taxonomy, PureType,
Augmented Type, Extender, Data Manager, Trait, Cobol Like,
State Machine Recursive, and Limited Self [7]. While the reader
is strongly encouraged to examine [7] for a detailed description,
we describe a few micro patterns here to provide a flavor of
these patterns:
Pool: A class has only final static fields and no methods.

Box: A class has exactly one instance field, which can be
modified by methods in the class.

Sampler: A class that has at least one public constructor and at
least one static field whose type is the same as that of the class.

Limited Self: Suppose class ‘foo’ is a subclass of class ‘bar’. If
‘foo’ does not introduce any new fields, and all self method calls
in ‘foo’ are calls to methods in ‘bar’, then ‘foo’ is a Limited Self
pattern class.

Recursive: A class that has at least one field whose type is the
same as that of the class. For example, java.util.LinkedList is a
recursive pattern class.

Sink: a class whose declared methods do not call instance
methods or static methods.

Implementor: a non-abstract class such that all of its public
classes are implementation of its super abstract class.

We use micro patterns for our pattern change analysis for three
reasons: (1) they are traceable, (2) they are close to the source
code, (3) and they capture non-trivial design idioms of the Java
language.

3. EXPERIMENT SETUP
In this section, we describe the data used in our study and
explain how it was extracted. We use the Kenyon [3]
infrastructure to automatically extract project revisions and class
changes from the SCM repositories for ArgoUML, Columba,
and jEdit. Bug-introducing changes are identified by mining
change logs and project history data using techniques described
in [13]. Micro patterns are extracted using a pattern extraction
tool developed by Gil and Maman [7], after compiling each
revision.

3.1 Micro Pattern Extraction
We extract software histories including all revisions and all files
from SCM systems such as CVS [2] using the Kenyon
infrastructure [3]. After checking out each project revisions, we
compile the revision and generate a jar file. We feed the jar file
into the micro pattern extraction tool [7]. The tool automatically
reads all class files in the jar file and extracts the pattern(s)
matched by each class file. We persistently store these extracted
micro patterns for each Java class file for all revisions of all
three projects.

3.2 Pattern Changes and Bug Changes
Now we have the micro patterns for all Java class files
(corresponding Java source files) of each revision. Using the
standard diff tool, we can easily identify Java class file changes.
To determine bug-introducing changes, we mine SCM change
logs and project history data [13]. We then observe the micro
pattern changes in each Java class file and compute bug
introduction rates for these changes.

41

For example, consider the change history for the file ‘foo.java’
(foo.class) as shown in Figure 1. The change log at revision 6
(Rev 6) states “Fixed issue #355”, which indicates that it is a fix
change. It means the file at revision 5 has one or more
problematic lines, which are fixed in revision 6 by changing the
problematic lines. When were the problematic lines added in the
first place? SCM systems such as CVS [2] and Subversion [1]
provide an annotation feature that shows information about
when each line of a file was modified, and by whom. Using
SCM annotation, we can find out when the problematic lines
were initially added. Suppose the problematic lines were added
in revision 3. This means the file at revision 2 does not have the
problematic lines, so they were added in the change between
revision 2 and 3. This change introduced a bug into the software,
and hence we call it a bug-introducing change.

Figure 1. Example of pattern evolution kinds and a bug-
introducing change.
The micro patterns for each revision are shown in Figure 1. As
an example, the pattern evolution kind for ‘foo.class’ between
revisions 1 and 2 is ‘NONE → NONE’. In Figure 1, we see the
following micro pattern evolution kinds: ‘NONE → NONE’ (1
time), ‘NONE → Canopy’ (1 time), ‘Canopy → Canopy’ (2
times), and ‘Canopy → Limited Self’ (1 time). We count the
number of bug-introducing changes and compute the bug
introduction rate for each micro pattern evolution kind. For
example, the bug-introducing change count of the ‘NONE →
Canopy’ kind is 1, and occurs 1 time, so it has a 100% bug
introduction rate. General categories of pattern evolution kinds
are described in Table 2.

Table 2. Categories of pattern evolution kinds
Category Description

Pattern unchanged Pattern remains the same after a class
change. E.g. Canopy → Canopy

Change to
other pattern

Pattern changes to other patterns. E.g.
Stateless → RestrictedCreation

Losing pattern Pattern changes to NONE. E.g.
LimitedSelf → NONE

Pattern
changes

Adding
pattern

Pattern changes from NONE. E.g.
NONE → Stateless

When we compute the bug introduction rates of micro pattern
evolution kinds, we filter out the total count if it is less than 10
(outliers). If a micro pattern evolution kind occurs less than 10
times, we believe it is hard to make general conclusions about its
bug introduction rate, and it is possible that a small number of
bugs can affect the bug introduction rate substantially.

4. RESULTS
We first present micro pattern frequencies of a project snapshot
(the latest revision). We next show the list of micro pattern
evolution kinds, their counts, and ratios. The bug-prone micro
pattern evolution kinds are shown using contour graphs. We
compare common bug-prone evolution kinds of three projects

and two periods of the same project. Finally, we compare
frequencies, the number of changes, and bug rates of each micro
pattern.

Table 3. Java micro pattern frequencies of analyzed
projects. The * marked patterns do not exist or are rare in the

analyzed projects; we exclude them in further analysis.
 Micro Patterns ArgoUML (%) Columba (%) jEdit (%)

Box 1 3 2
Compound Box 1 2 6
Sampler 1 2 1
Canopy 8 10 22
Immutable 3 5 10
Implementor 28 31 32
*Pseudo Class 0 0 0
Pool 1 3 1
Restricted Creation 2 2 1
Overrider 8 7 22
Sink 5 10 10
Stateless 8 9 5
Common State 1 1 3
Outline 1 0 0
Function Pointer 1 2 1
Function Object 5 7 19
*Joiner 0 0 0
*Designator 0 0 0
Record 0 0 1
Taxonomy 1 2 2
PureType 4 9 4
*Augmented Type 0 0 0
Extender 3 11 5
Data Manager 1 3 1
*Trait 0 0 0
Cobol Like 0 1 0
State Machine 1 2 1
Recursive 0 0 2
Limited Self 16 20 12
Coverage 55 79 81

4.1 Pattern Frequencies
We compute micro pattern frequencies of a project snapshot (the
latest revision), with results shown in Table 3. ‘Canopy’,
‘Implementor’, ‘Overrider’, ‘Function Object’, and ‘Limited
Self’ are the most prevalent micro patterns. 81% of classes have
one or more micro patterns in jEdit, 79% for Columba and 55%
for ArgoUML. The remaining classes do not match any micro
pattern (NONE). Some micro patterns, such as ‘Joiner’ or
‘Pseudo Class,’ do not exist in the latest revision.

The micro pattern distributions of three projects are quite
similar. For example, the Pearson’s correlation coefficient [5] of
the micro pattern frequencies of ArgoUML and jEdit is 0.96.
Even though these two projects have different physical features
in their source code, they have similar pattern frequencies,
suggesting that any correlations between patterns, or pattern
evolution kinds found in these two projects would have
applicability to both projects, and perhaps others as well.

4.2 Pattern Evolution Kinds
We count all micro pattern evolution kinds of each Java class
file change across the project histories. Table 4 shows the top 20
micro pattern evolution kinds, their counts, and relative
frequency (percentage of all observed pattern evolutions) of
each pattern change. The most common micro pattern evolution
kind is ‘NONE → NONE’. Other common micro pattern
evolution kinds are ‘LimitedSelf → LimitedSelf’, ‘Implementor
→ Implementor’, ‘Overrider → Overrider’, and ‘Extender →
Extender’. The common micro pattern evolution kinds are
similar for the three projects.

42

Table 4. Top 20 most common pattern evolution kinds of the analyzed projects.

 ArgoUML Columba jEdit

Rank Pattern evolution kind
change #
(change %) Pattern evolution kind

change #
(change %) Pattern evolution kind

change #
(change %)

1 NONE → NONE 1830 (33%) NONE → NONE 4245 (31%) NONE → NONE 1738 (24%)
2 LimitedSelf → LimitedSelf 931 (17%) LimitedSelf → LimitedSelf 1684 (12%) LimitedSelf → LimitedSelf 803 (11%)
3 RestrictedCreation → RestrictedCreation 490 (8.8%) Implementor → Implementor 1589 (12%) Overrider → Overrider 751 (10%)
4 Implementor → Implementor 375 (6.8%) Extender → Extender 1294 (9.5%) CommonState → CommonState 582 (7.9%)
5 Overrider → Overrider 342 (6.2%) Overrider → Overrider 749 (5.5%) Implementor → Implementor 575 (7.8%)
6 Extender → Extender 262 (4.7%) Stateless → Stateless 578 (4.2%) Canopy → Canopy 452 (6.2%)
7 Sink → Sink 203 (3.7%) Sink → Sink 538 (4%) Recursive → Recursive 317 (4.3%)
8 Stateless → Stateless 189 (3.4%) CommonState → CommonState 237 (1.7%) Extender → Extender 286 (4%)
9 Sampler → Sampler 142 (2.6%) Immutable → Immutable 223 (1.6%) Sampler → Sampler 274 (3.7%)

10 Common State → Common State 91 (1.6%) Box → Box 201 (1.5%) Immutable → Immutable 223 (3%)
11 Immutable → Immutable 77 (1.4%) PureType → PureType 178 (1.3%) CompoundBox → CompoundBox 216 (2.9%)
12 Compound Box → Compound Box 70 (1.3%) Taxonomy → Taxonomy 163 (1.2%) FunctionObject → FunctionObject 183 (2.5%)
13 Implementor → NONE 70 (1.3%) DataManager → DataManager 163 (1.2%) Sink → Sink 170 (2.3%)
14 NONE → Stateless 50 (0.9%) CompoundBox → CompoundBox 161 (1.2%) Pool → Pool 140 (1.9%)
15 Canopy → Canopy 45 (0.8%) Canopy → Canopy 145 (1.1%) Stateless → Stateless 112 (1.5%)
16 Outline → Outline 42 (0.8%) Outline → Outline 143 (1%) PureType → PureType 63 (0.9%)
17 Box → Box 30 (0.5%) RestrictedCreation → RestrictedCreation 127 (0.9%) Box → Box 39 (0.5%)
18 LimitedSelf → NONE 27 (0.5%) FunctionPointer → FunctionPointer 114 (0.8%) DataManager → DataManager 37 (0.5%)
19 Pool → Pool 25 (0.5%) Pool → Pool 97(0.7%) Outline → Outline 24 (0.3%)
20 NONE → Implementor 24 (0.4%) FunctionObject → FunctionObject 82 (0.6%) Taxonomy → Taxonomy 17 (0.2%)

Also note that the patterns in the top pattern evolution kinds are
not the same as the most frequent patterns shown in Table 3. For
example, the most common pattern in jEdit is ‘Implementor’,
but the most common pattern evolution kind is ‘LimitedSelf →
Limited Self’ (excluding ‘NONE → NONE’). The fourth ranked
pattern evolution kind, ‘CommonState → CommonState’, is a
relatively rare micro pattern in jEdit (only 3%).

Overall, micro patterns in Java class files do not frequently
transition to new micro patterns. If a Java class file exhibits
characteristics of a given micro pattern, the class file tends to
stick to the original micro pattern as the class file changes. Table
5 shows the counts and percentages of pattern evolutions that
change patterns, and those that do not. Only 4 to 6% of Java
class file changes result in micro pattern changes.

Note that the total pattern evolution kind count (Table 5) is
greater than the total class file change count (Table 1), since a
class file can have more than one pattern and a class change
includes more than one pattern evolution kind. The multiplicity
of micro patterns are explained in [7].

Table 5. Ratio of pattern evolution kinds the three projects.

 ArgoUML Columba jEdit
Pattern unchanged 5,238 (94%) 12,977 (95%) 7,403 (95.9%)
Pattern changes 313 (6%) 643 (5%) 287(4.1%)

4.3 Bug-prone Pattern Evolution Kinds
We count bug-introducing changes for each micro pattern
evolution kind, and compute the bug change rate for each kind.
After computing all bug introduction rates for all pattern
evolution kinds, we draw contour graphs to indicate the common
bug-prone pattern evolution kinds. Figure 2 shows the bug
introduction rates for each micro pattern evolution kind for
ArgoUML. The x-axis indicates to-patterns and y-axis indicate
from-patterns. For example, the left-bottom cross indicates the
bug rate of the ‘NONE → NONE’ pattern evolution kind. The
order of micro patterns along the x-axis and y-axis is the same as
the ordering in Table 3, excluding the infrequently occurring *

marked patterns. The contour line density indicates the bug
rates. Note that the value associated with each contour line
varies by chart, since each chart scales the contours to improve
presentation. Contour graphs show the overview properties of
bug-prone pattern evolution kinds. Denser contour lines indicate
higher bug rates.

Figure 2. ArgoUML bug-prone pattern evolution kinds
Figure 3 shows bug introduction rates for each micro pattern
evolution kind for jEdit. The two contour graphs (Figure 2, and
Figure 3) show that the bug-prone micro pattern evolution kinds
of the two projects are somewhat similar, but not identical. For
example, the ‘Sampler → Sampler’ micro pattern evolution kind
is bug-prone in all projects. However, the ‘CompoundBox →
Canopy’ micro pattern evolution kind is bug-prone in jEdit, but
not in ArgoUML. Table 6 shows the top 20 most bug-prone
pattern evolution kinds of all three projects.

43

Table 6. Top 20 most bug-prone pattern evolution kinds.

 ArgoUML Columba jEdit
Rank Pattern evolution kind bug

rate Pattern evolution kinds bug
rate Pattern evolution kinds bug

rate
1 Pool → Pool 40 Implementor → NONE 26 Sampler → Sampler 72
2 CommonState → CommonState 37 RestrictedCreation → RestrictedCreation 22 Recursive → Recursive 63
3 Canopy → Canopy 36 CompoundBox → CompoundBox 21 CommonState → CommonState 58
4 Sampler → Sampler 33 Immutable → Immutable 21 FunctionObject → NONE 53
5 Box → Box 30 CobolLike → NONE 20 CompoundBox → CompoundBox 52
6 Immutable → Immutable 29 NONE → Implementor 19 LimitedSelf → LimitedSelf 51
7 NONE → NONE 27 NONE → NONE 18 NONE → NONE 49
8 Stateless → Stateless 27 LimitedSelf → NONE 18 Pool → Pool 48
9 RestrictedCreation → RestrictedCreation 26 Recursive → Recursive 18 Immutable → Immutable 43

10 Extender → Extender 23 Overrider → NONE 17 Outline → Outline 42
11 LimitedSelf → NONE 22 NONE → Extender 17 Immutable → NONE 40
12 LimitedSelf → LimitedSelf 21 NONE → Overrider 15 Implementor → NONE 38
13 Outline → Outline 19 CommonState → CommonState 14 Sink → NONE 38
14 NONE → CobolLike 18 FunctionObject → FunctionObject 13 NONE → LimitedSelf 36
15 CompoundBox → CompoundBox 17 Box → Box 13 Stateless → Stateless 34
16 Overrider → Overider 17 Stateless → Stateless 13 CompoundBox → NONE 33
17 Implementor → Implementor 11 Extender → NONE 13 PureType → PureType 32
18 NONE → CommonState 10 Extender → Extender 12 Implementor → Implementor 32
19 NONE → FunctionObject 10 Canopy → Canopy 12 Extender → Extender 31
20 Stateless → RestrictedCreation 9.1 CobolLike → CobolLike 12 Overrider → Overrider 31

Figure 3. jEdit (rev 1-1449) bug-prone pattern evolution kinds
We observe bug-prone micro pattern evolution kinds in two
different periods of the same project, jEdit. The bug rates of each
micro pattern evolution kind of the two periods are shown in
Figure 4 (revisions 1-500) and Figure 3 (revisions 1-1449). The
bug introduction rates of the two periods are almost identical. We
conclude that the bug rates of micro pattern evolution kinds of
different projects are typically, but not always, similar. Bug-prone
pattern evolution kinds from two different periods of the same
project are very similar. We expect that quality assurance
personnel could use already observed bug-prone micro pattern
evolution kinds in a project to predict future bug-prone pattern
evolution kinds for that same project.

4.4 Frequencies, Pattern Evolution Kinds,
and Bug Rates
Since the Java class changes that cause pattern changes are
infrequent (only 4 to 6% in Table 5), in this section we observe
only class file changes that do not change micro patterns, such as
‘NONE → NONE’, ‘Box → Box’, and Sampler → Sampler.’ We
compare the frequencies, the number of the evolution kinds, and

bug rates of these micro patterns. To permit cross-project
comparison, we normalize each value (i.e., frequency, the number
of the evolution kinds, and bug rate) by dividing each value by the
sum of the values. For example, each change count is divided by
the total number of changes to compute a normalized change
count. The sum of normalized values is 1. The normalized values
show the distribution of values among micro patterns. Figure 5-
Figure 7 show the normalized values of each pattern of the three
projects. For example, in Figure 5, 35% of the micro pattern
evolution kinds are ‘NONE → NONE,’ as shown in the middle
bar for ‘NONE’ (this is slightly higher than the 33% value for
NONE → NONE in Table 4, since we have eliminated rates of
class file changes that change micro patterns, and then
recomputed frequencies). However, the bug introduction rate of
‘NONE → NONE’ is relatively low. Though Table 6 indicates
that 27% of these transitions are buggy, they are only 6% of total
project bugs. In contrast, the ‘CommonState→CommonState’
transition is found in only 1.6% of changes (see Table 4), but it
contributes 9% of total project bugs. Clearly this is a dangerous
type of change.

Figure 4. jEdit (rev. 1-500) bug-prone pattern evolution kinds

44

We observe that, in general, the fact that a pattern frequently
occurs in the source code does not necessarily mean that it
frequently changes. Similarly, the number of pattern changes and
the bug introduction rate are not strongly correlated. Some
patterns have many changes, but low bug introduction rates. There
are common patterns, which occur less frequently and have small
change numbers, but high bug introduction rates. For example, the
‘Box’, ‘CompoundBox’, ‘Pool’, ‘CommonState’, and ‘Outline’
micro patterns have high bug rates, but their frequencies and
change counts are low. In contrast to that, ‘Overrider’ and ‘Sink’
micro patterns have comparatively lower bug rates.

Figure 5. Micro pattern distributions, the number of changes,
and bug rates of ArgoUML

Figure 6. Micro pattern distributions, the number of changes,
and bug rates of Columba

Figure 7. Micro pattern distributions, the number of changes,
and bug rates of jEdit

5. DISCUSSION
5.1 Generalization
We identified the common pattern evolution kinds and bug-prone
micro patterns of three projects. We showed that the three projects
share some common properties, but they are not identical. We
analyzed only these three projects, so it is hard to determine if our
findings are broadly generalizable.

However, we showed that the bug-prone pattern evolution kinds
of two different periods of the same project are very similar. This
indicates that the common pattern evolution kinds and bug-prone
micro patterns discovered in part of a project’s history can be
generalized for the remainder of the project’s history.

5.2 Bug-prone Patterns
We identified common bug-prone micro patterns of the three
analyzed projects, and summarize our findings in Table 7. Why
are some micro patterns more bug-prone than others?
Understanding bug-prone micro patterns may lead to a deeper
understanding of the causes of bug-introducing changes. We also
note that, since a class changes micro patterns so infrequently,
most of our results are really noting correlations between
individual micro patterns and bug-proneness, and not correlations
between changes of micro pattern and being bug-prone.

Table 7. More/less bug-prone micro patterns
Category Micro Pattern evolution kinds/micro patterns
Bug-prone
Pattern
evolution
kinds

Pool → Pool, Implementor → NONE, Sampler →
Sampler, CommonState → CommonState,
Canopy→Canopy, Recursive → Recursive

High bug rate
patterns

Box, CompoundBox, Sampler, Pool, Outline,
CommonState

Low bug rate
patterns

Overrider, Sink

Identifying pattern specific bugs may provide insight into the
causes of bug creation. However, since identifying micro pattern
specific bugs requires manual project analysis, it is very labor-
intensive. In our limited explorations to date, we have not found
strong examples or trends in pattern-specific bugs. Identifying
trends in micro pattern specific bugs remains as future work.

5.3 Threats to Validity
There are four major threats to the validity of this work.

Systems examined might not be representative. We examined
three systems. It is possible that we accidentally chose systems
that have similar (or different) micro design patterns and
evolution properties. Since we intentionally only chose systems
that had some degree of linkage between change tracking systems
and the text in the change log (so we could determine bug-
introducing changes), we have a project selection bias. It certainly
would be nice to have a larger dataset.

Systems are all open source and written in Java. The systems
examined in this paper all use an open source development
methodology and are written in Java, and hence might not be
representative of all development contexts. It is possible that the
stronger deadline pressure of commercial development could lead
to different micro pattern change properties.

Some revisions are not compilable. To extract micro patterns from
Java source code, we need to compile them and create class files

45

first. Analyzed open source projects contain revisions that cannot
be compiled, with reasons ranging from syntax errors to missing
library files. We skipped non-compilable source code, which may
affect the results.
Bug-introducing change data is incomplete. We rely on the
change logs to identify bug-introducing changes. Even though we
selected projects that have good quality change logs, we still are
only able to extract a subset of the total number of bugs. The bug
change identification relies on the heuristic algorithm given in
[13], so it may have false positives and false negatives.

6. RELATED WORK
Patterns in software design and implementation have been
explored by many research efforts. In object-oriented designs,
design patterns describe the relationships and interactions between
classes or class instances and the template to manage them. In [6],
Gamma et al. discussed some design patterns that are categorized
into creational patterns, structural patterns, and behavioral
patterns. Heuzeroth et al. [8] explored automatic design pattern
detection in legacy code using static and dynamic analyses, in
which patterns like Observer, Composite, Mediator, etc. are
identified from Java code. In [12], Prechelt et al. presented a
system called Pal that discovers structural design patterns in C++
software by examining the C++ header files. Livshits and
Zimmermann combined software repository mining and dynamic
analysis to discover common usage patterns and code patterns that
likely encounter violations in Java applications [10]. Code-Web
[11] discovers library reuse patterns in the ET++ application
framework through data mining. Micro patterns are at an abstract
level between design patterns and implementation patterns.
Compared to design patterns, micro patterns are extractable;
compared to implementation patterns that need static or dynamic
analysis to discover them, micro patterns require less computation
to extract.

Gil and Maman perform analysis on the prevalence of micro
patterns across the Sun JDK versions 1.1, 1.2, 1.4, 1.4 and 1.4.2.
They only compared distributions in each release and conclude
that pattern prevalence tends to be the same in software
collections [7]. We analyzed not only distributions, but also
pattern evolution kinds and bug-prone change kinds.

Signature change pattern analysis [9] is similar to ours in that they
try to observe signature change patterns over revisions. However,
they observed only signatures change patterns, while our approach
analyzes micro pattern evolution, which includes non-trivial
idioms of each Java class. We also identify bug-prone patterns
among identified patterns.

7. CONCLUSIONS AND FUTURE WORK
We observed the micro pattern evolution properties of three open
source projects, including frequencies of micro patterns, common
micro pattern evolution kinds, and bug-prone micro patterns. We
found that the micro pattern distributions and common change
kinds of analyzed projects are similar. The bug rates of patterns of
different projects are somewhat similar. However, the bug rates of
two different periods of the same projects are almost identical. We
conclude that the identified bug-prone patterns from a part of a
project history can be used to predict or raise awareness of the
future pattern changes for the project.

We need to analyze more software projects to see if our findings
can be generalized to other projects. The micro patterns are not

originally designed to identify more/less bug-prone modules. We
need to mine or develop new patterns to easily identify more/less
bug-prone patterns. In addition, we need to mine finer granularity
patterns for use at the function/method level. The software pattern
evolution analysis methodology used in this paper can be reusable
for other software patterns.

8. ACKNOWLEDGMENTS
Our thanks to Itay Maman and Joseph (Yossi) Gil for allowing us
use the micro pattern extraction tool and for their valuable
feedback.

9. REFERENCES
[1] B. Behlendorf, C. M. Pilato, G. Stein, K. Fogel, K. Hancock,

and B. Collins-Sussman, "Subversion Project Homepage,"
2005, http://subversion.tigris.org/.

[2] B. Berliner, "CVS II: Parallelizing Software Development,"
Proc. Winter 1990 USENIX Conf., Washington, DC, pp.
341-351, 1990.

[3] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey,
"Facilitating Software Evolution with Kenyon," Proc. 2005
European Software Engineering Conference and 2005
Foundations of Software Engineering (ESEC/FSE 2005),
Lisbon, Portugal, pp. 177-186, 2005.

[4] J. W. Cooper, The Design Patterns: Java Companion:
Addison-Wesley, 1998.

[5] R. E. Courtney and D. A. Gustafson, "Shotgun Correlations
in Software Measures," Software Engineering J., v. 8, pp. 5 -
13, 1992.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Boston, MA, USA: Addison-Wesley, 1995.

[7] J. Y. Gil and I. Maman, "Micro Patterns in Java Code,"
proceedings of the 20th Object Oriented Programming
Systems Languages and Applications, San Diego, CA, USA,
pp. 97 - 116, 2005.

[8] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe,
"Automatic Design Pattern Detection," Proc. 11th IEEE Int'l
Workshop on Program Comprehension, pp. 94, 2003.

[9] S. Kim, E. J. Whitehead, Jr., and J. Bevan, "Analysis of
Signature Change Patterns," Proc. Int'l Workshop on Mining
Software Repositories (MSR 2005), Saint Louis, MO, USA,
pp. 64-68, 2005.

[10] B. Livshits and T. Zimmermann, "DynaMine: Finding
Common Error Patterns by Mining Software Revision
Histories," Proc. 2005 European Software Engineering Conf.
and Foundations of Software Eng. (ESEC/FSE 2005),
Lisbon, Portugal, pp. 296-305, 2005.

[11] A. Michail, "Data Mining Library Reuse Patterns in User-
Selected Applications," Proc. 14th International Conference
on Automated Software Engineering, Cocoa Beach, Florida,
USA, pp. 24–33, 1999.

[12] L. Prechelt and C. Krämer, "Functionality versus
Practicality: Employing Existing Tools for Recovering
Structural Design Patterns," J. Universal Computer Science,
vol. 4, pp. 866-882, 1998.

[13] J. Sliwerski, T. Zimmermann, and A. Zeller, "When Do
Changes Induce Fixes?" Proc. Int'l Workshop on Mining
Software Repositories (MSR 2005), Saint Louis, MO, USA,
pp. 24-28, 2005.

46

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

Mining Sequences of Changed-files from Version Histories
Huzefa Kagdi, Shehnaaz Yusuf, Jonathan I. Maletic

Department of Computer Science
Kent State University

Kent Ohio 44242

{hkagdi, sdawoodi, jmaletic}@cs.kent.edu

ABSTRACT
Modern source-control systems, such as Subversion, preserve
change-sets of files as atomic commits. However, the specific
ordering information in which files were changed is typically not
found in these source-code repositories. In this paper, a set of
heuristics for grouping change-sets (i.e., log-entries) found in
source-code repositories is presented. Given such groups of
change-sets, sequences of files that frequently change together are
uncovered. This approach not only gives the (unordered) sets of
files but supplements them with (partial temporal) ordering
information. The technique is demonstrated on a subset of KDE
source-code repository. The results show that the approach is able
to find sequences of changed-files.

Categories and Subject Descriptors
D.2.7. [Software Engineering]: Distribution, Maintenance, and
Enhancement – documentation, enhancement, extensibility,
version control

General Terms
Management, Experimentation

Keywords
Mining Software Repositories, Heuristics, Change Sequences

1. INTRODUCTION
Source-code repositories store metadata such as user-ids,
timestamps, and commit comments. This metadata explains the
why, who, and when dimensions of a source-code change.
Researchers have utilized this type of information for a variety of
purposes in the context of supporting and understanding software
evolution [5, 6, 9, 12-15] . This includes discovering entities (e.g.,
files) that frequently change together for the purpose of supporting
software-change prediction [3, 8, 10, 11, 16, 17, 21]. Software-
change prediction approaches based on itemset mining produce
unordered collections of the changed entities. For example, a set
of files {f1, f2} that are frequently changed or rules such as
changes in a set {f1, f2} leads to changes in a set {f3, f4}.

However, software changes are inherently (partially) ordered
along the time dimension1. Itemset mining approaches ignore the
ordering information in the mining phase. However, the ordering
must be considered at a later stage in software-change prediction.
For example if a set of changed-files {f1, f2} is equivalent to a set
{interface, implementation}, the changes are not necessarily
symmetric. The mined set {f1, f2} may be an artifact of only the
interface changes, {f1} leading to implementation changes, {f2}
and not vice-versa. Therefore, ignoring the ordering information
could lead to a false prediction of {f1} due to a change in {f2}.

Here, we explore the ordering of changed-files by utilizing the
information found in the versions log of source-code repositories.
We present an approach that processes the log-entries to deduce
the partial ordering information among changed-files. For
example, our approach discovers sequences of changed-files such
as {f1}→{f2} and {f4}→{f5}. The sequence {f1}→ {f2}
indicates that changes in {f1} happens before {f2}. We term this
problem as mining sequences of changed-files. We define six
heuristics for grouping the log-entries (i.e., change-sets) of a
source-code repository. Given such a group of log-entries we
uncover sequences of files that frequently change together. This
approach gives not only the (unordered) sets of files but
supplements them with (partial) ordering information. Therefore,
this approach of changed-files sequence-mining subsumes the
approach of changed-files itemset mining.

The rest of the paper is organized as follows. In section 2, we
discuss the available change-set records from source-code
repositories. In section 3, we present heuristics for grouping. In
section 3, we discuss frequent sequence mining. In section 4, we
describe the developed toolset. In section 5, we apply our
approach on KDE version history. In section 6, we briefly discuss
related work. Finally, we state our conclusions and future
directions in section 7.

2. CHANGE-SETS RECORDS
There is an inherent temporal ordering between various change-
sets. It is not uncommon to have a change-set either planned (e.g.,
a standard refactoring or a fix for a documented bug) or unplanned
activity (e.g., a violation of hidden dependencies) leading to
further change-sets. First, we examine how these change-sets are
recorded in repositories maintained by modern source control
systems.

Among several other improvements over CVS and alike, modern
source-control systems, such as Subversion, preserve the grouping

1 In the rest of the discussion, ordering and temporal ordering are used
interchangeably unless specified.

47

of several changes in multiple files to a single change-set as
performed by a committer (i.e., an atomic commit). Version-
number assignment and metadata are associated at the change-set
level and recorded as a logentry. As shown in Figure 1, a change-
set is stored as a single logentry. Subversion’s log-entries include
the (structured) dimensions committer, date, and paths (i.e., files)
involved in a change-set. As shown in Figure 1, each logentry is
uniquely identified by a revision number. There is no temporal
ordering between paths khtml_part.cpp and loader.h. Clearly, the
logentry alone is insufficient to give the temporal ordering of the
files involved in a change-set. However, there is a temporal order
between change-sets. Change-sets with greater revision numbers
occur after those with lesser revision numbers. Therefore, we can
utilize the ordering of change-sets to determine ordering of files.

A straightforward approach is to exhaustively list all the
sequences of the changed-files. For example, if a change-set {f1,
f2} occurs before {f3. f4}, the possible changed-file sequences are
{f1}→{f3}, {f1, f2}→{f3}, and so forth. However, this leads to
two major issues: 1) sequences that may not be useful for software
evolution tasks such as change predication (i.e., false positives)
and 2) examination of combinatorial explosion of changed-file
sequences. Notice that the atomic commits are serialized. The
temporal order in which log-entries appear in the log files is at
discretion of a version-control system. As a result successive log-
entries may be unrelated in the context of changes performed in
the files. Therefore, it may result in meaningless changed-file
sequences.

In an effort to avoid reporting of meaningless changed-file
sequences, we define heuristics for grouping “related” change-
sets. Furthermore, given such related change-sets, we employ
sequence mining to effectively deal with the combinatorial
explosion of search space.

3. CHANGE-SET GROUPING HEURISTICS
The heuristics are driven by grouping of log-entries based on the
dimensions committer, date, and the paths as discussed below.

Time Interval - Change-sets committed in the same time-interval
are related and change-sets committed in different time-intervals
are unrelated. This helps define ordering on the change-sets in the
same time-interval. Therefore, all the change-sets (i.e., log-entries)
committed in a given time duration are placed in a single group.
The sequences of files found using this heuristic implies that if a
file is modified in a sequence on a day, the following (preceding)
files are modified on the same day.

Committer – The change-sets modified by a committer are related
and the change-sets modified by different committers are
unrelated. This defines an order on the change-sets by a
committer. Therefore, all the change-sets (i.e., log-entries)
committed by a given committer are placed in a single group. The
sequences of files found using this heuristic implies that if a file is
modified in a sequence by a committer, the following (preceding)
files are modified by the same committer.

File – Change-sets involving a particular file are related. This
defines ordering on the change-sets by a particular file. Therefore,
all the change-sets (i.e., log-entries) committed in which a given
file is involved are placed in a single group. The sequences of
files found using this heuristic establishes a temporal position of a
file in the sequences of changes with other files.

Joins of the above heuristics lead to further groupings of change-
sets. For example, the join of heuristics Committer and File
implies committers typically do not work on a same change-set.
However, committers may work on the same file in different time
intervals. This defines an order on the changed-files by a
committer in a time interval. The sequences of files found using
this heuristic implies that if a file is modified on a day by a
committer, the following (preceding) files are modified on the
same day by the same committer.

Figure 1. A Snippet of kdelibs Subversion Log

These heuristics are the first step towards mining sequences of
changed-file sets. Heuristics helps us to define a logical grouping
of change-sets but does not directly give the order in which files
were changed within a given change-set. In the next section, we
describe our approach of mining frequent sequences of changed-
files from grouped change-sets.

4. MINING CHANGED-FILE SEQUENCES
The problem of mining sequences of changed-files is an instance
of mining frequent sequences of items. We first give definitions
of a sequence and the problem of frequent sequence mining.
Then, we show the reduction of our problem to the problem of
mining frequent sequences.

A frequent-sequence is made up of (ordered) elements. Each
element is made up of (unordered) items. The ordering of
elements imposes a partial order on the items. For example, the
frequent sequence {f1, f2}→{f3, f4}→{f5} is made up of 3
elements and 5 items. It indicates that the element {f1, f2}
happens before the element {f3, f4} and the element {f3, f4}
happens before the element {f5}. However, the happens before
relation between items f3 and f4 is unknown in the element {f3,
f4}. Therefore, a frequent-sequence establishes both the ordered
and unordered relationship between items.

The problem of finding frequent sets of sequences is formally
defined as given a set of items, α = {i1, i2, …. im}, and a set of
transactions, τ = {T1, T2, ….., Tn}, find all the sets of sequences, S
= {S1, S2, …So}, that co-occur in at least a given number (or
percentage) of transactions i.e., it satisfies a given minimum
support, σmin. Each Transaction contains an ordered list of events
and is identified by an unique id, Ti = (tid, ε) where ε = [E1, E2,
…., Ep] | ∀i,j Ei → Ej. and → is a given ordering relation on
events. Each event contains a set of items and is identified by an
unique id, Ei = (eid, ⊆ α). Each sequence is defined as an ordered
list of elements (i.e., itemsets), SI = [I1→ I2→ …..→Ip] |∀ Ii ⊆ α,

<?xml version="1.0" encoding="utf-8"?>
<log>
 <logentry revision="438663">
 <author>kling</author>
 <date>2005-07-25T17:46:20.434104Z</date>
 <paths>
 <path action="M">khtml_part.cpp</path>
 <path action="M">loader.h</path>
 </paths>
 <msg>
 Do pixmap notifications when
 running ad filters.
 </msg>
 </logentry>
</log>

48

and each member of an element, ij ∈ Ii is defined as an item of a
sequence. A mined sequence Si is called a frequent sequence. A
sequence consisting of k items is referred to as a k-sequence. The
number (or percentage) of transactions in which a sequence occur
is known as its support (frequency).

The problem of frequent-sequence mining was introduced by
Agrawal [1]. A number of algorithms for frequent-sequence
mining are proposed. Their discussion is out of the scope in this
paper. The reduction of our problem of mining sequences of
changed-files to that of frequent-sequence mining is
straightforward. Here, we have a set of transactions, τ, mapped to
the grouping of change-sets formed by the application of a
heuristic on the log-entries, events Ei→…→Ej in each transaction,
Ti, maps to the change-sets ordered by revision numbers.
Following this reduction, the solution to the frequent-sequence
problem, S, gives the solution to the frequent changed-files
sequences.

Figure 2. Tool-Chain for Mining Frequent Changed-files

5. MINING TOOLSET
We developed svn2inseqs and sqminer to process Subversion log-
entries and mine the sequences of changed-file. The tool-chain is
shown in Figure 2. The overall process is: 1) use the svn log
command to produce the log-entries in XML format, 2) use
svn2inseqs to apply a grouping heuristic on the log-entries and
obtain the input transactions and events, and 3) finally, use
sqminer to find the sequences of changed-files. In the following
sections, we expand on phases 2 and 3.

5.1. Log-entries to Input-Transactions
Six grouping heuristics, date (time interval), author2 (committer),
file, author-date, author-file, and date-file are implemented as
XSLT programs. The Python script svn2inseqs takes as input the
log-entries such as the one shown in Figure 1 and a XSLT
grouping heuristic, and transforms the log-entries to the
corresponding input transactions and events in a flat-file format.
One such example of input transactions obtained from the log-
entries of the kdelibs repository is shown in Figure 3. Here, the
log-entries are grouped by the heuristic author-date. The input-
transactions file contains a set of events, each specified on a
separate line. An event description consists of a generated input
transaction-id (e.g., 14). The transaction-id corresponds to an
author-date combination i.e., the change-sets performed by an
author (giessl) on a particular date (2005-07-26). The revision

2 We do not make the distinction between authors, contributors,
volunteers, and so forth.

number of a log-entry (i.e., a change-set) is used as an event-id
(e.g., 438962 and 438971). Finally, the files involved in a change-
set are listed.

Figure 3. A Snippet of Input Transactions from kdelibs Log-

entries grouped by Heuristic Author-Date.

5.2. Mining Changed-file Sequences from
Input Transactions via sqminer

The transactions constructed by the application of heuristics such
as the one shown in Figure 3 are fed to the sequence mining tool,
sqminer. The tool sqminer is realized based on the Sequential
Patten Discovery Algorithm (SPADE) [19]. The SPADE
algorithm utilizes an efficient enumeration of sequences based on
common-prefix subsequences and division of search space using
equivalence classes. Additionally, it utilizes a vertical input-
transaction format for an efficient counting of support values. The
configuration parameters of sqminer include support, max number
of items allowed in a sequence, mining of sequence (association)
rules, and output in both the flat-file and XML format.

Figure 4. A Snippet of Sequences of Changed-files from
kdelibs Log-entries grouped by Heuristic Author-Date.

Figure 4 shows an example of a sequence of changed-paths mined
from kdelib with a minimum-support value of 3. In this case, a
file (plastik.cpp) was changed twice in a sequence. Transactions
formed from (possibly different) author-date values that have
common files in their change-set(s), contribute to the support
value of a sequence of changed-files. In Figure 3, transactions 14
and 116 are not formed from the same author-date values but both
support the sequence {plastik.cpp}→{plastik.cpp}. In addition to
the number of elements (i.e., size) and support values, information
about the transactions (seqid and eventid) in which these

<frequent-sequences input="kdelibs-authordate">
<frequent-sequence size="2" support="6">
 <elements>
 <element temporal-position="1">
 <items><item>plastik.cpp</item></items>
 </element>
 <element temporal-position="2">
 <items><item>plastik.cpp</item></items>
 </element>
 </elements>
 <idpairs>
 <idpair seqid="14" eventid="438971"/>
 <idpair seqid="116" eventid="449437"/>
 <idpair seqid="116" eventid="449484"/>
 </idpairs>
</frequent-sequence>
</frequent-sequences>

...........
14 438962 plastik/plastik.cpp
14 438971 plastik.cpp
...
116 449301 plastik.cpp
116 449436 kstyle.cpp kstyle.h
116 449437 plastik.cpp
116 449483 kstyle.cpp kstyle.h
116 449484 plastik.cpp
116 449494 plastik.cpp
116 449521 plastik.cpp
.......

49

sequences are found (i.e., idpairs) is also stored. This provides the
user (application or human) an additional context for their tasks.

Once we have a sequence, it can easily be reduced to an itemset.
For example, if a sequences a→b and b→a are found to have the
same support (and/or same id-pairs), it can be generalized to an
itemset {a, b}. The relationship between itemsets and sequences
is one-to-many i.e., it is possible that multiple sequences are
reduced to a single itemset. For example, the sequence shown in
Figure 4 is reduced to itemset as shown in Figure 5. An itemset is
a single element sequence composing of all the items in the
corresponding sequence. Notice that our approach produces a
multi-set. This information not only gives the items that were
involved but also the number of their instances implicitly.

6. EVALUATION
The presented heuristics and mining technique are evaluated on an
open source system. The primary interest is to show that our
approach is able to find frequent sequences of changed-files.

6.1. Dataset Acquisition
The considered version history from the KDE Subversion
repository is shown in Table 1. The dataset was collected on the
25th of January 2006. The log-entries were collected separately
for each of the KDE modules and the entire KDE. The svn log
command was used to extract the logs in XML format. Table 1
shows the number of revisions, days these revisions were
committed, authors, the number of (unique) files involved in the
change-sets (i.e., changed files column), and the number of
changes performed in these files. Note that the cumulative sum of
an attribute values may not agree with the corresponding value of
KDE due to common values across modules.

Figure 5. A Snippet of Itemsets of Changed-files from kdelibs
Log-entries grouped by Heuristic Author-Date.

6.2. Application of Heuristics
After acquiring the dataset, heuristics were applied (Day, Author,
File, Author-date, Author-file, and Day-file) with the help of a tool
svn2inseqs and the input files required by sqminer were generated.
A calendar day is mapped to the heuristic Time-interval. In this
study, log-entries consisting of more than ten files were pruned.
This was done to discard noisy change-sets such as those updating
the license information. Transactions with a single event were
also ignored as there is no temporal ordering found in a singleton
transaction.

The number of transactions and events obtained from the
application of each of the heuristics is given in

Table 5. The transactions and events maintain the invariant
|events| ≤ |Revisions| on account of pruning. The events are
distributed among the transactions based on the grouping dictated
by the heuristics. Therefore, the transaction density (i.e., number
of events in a transaction) is directly dependent on the applied
grouping heuristic. The above invariant implies that more the
number of transactions, lower the transaction density. On the
other end less the number of transactions, higher the transaction
density. The maximum changed-files sequence size (i.e., number
of elements) is less than or equal to the maximum number of
events found in a transaction. Based on the above properties, we
have the following observations: 1) transactions with high-density
values are likely to find long-size sequences of changed-files with
a less number of supporting transactions and 2) transactions with
low-density values are likely to find small-size sequences of
changed-files with a more number of supporting transactions.

Table 1. Log Information of the KDE Source-Code Repository

Period: (07-25-2005 to 01-25-2006) Modules
 Revisions Days Authors Changed-

Files
Changes
in files

arts 3 2 2 3 4
kde-common 295 125 36 30 325
kdeaccesibility 164 71 12 3129 3684
kdeaddons 155 77 19 3085 3623
kdeadmin 91 53 13 2979 3396
kdeartwork 95 32 10 4423 4598
kdebase 1493 173 90 6027 13364
kdebindings 129 43 6 3214 3424
kdeedu 886 154 37 4360 8077
kdegames 216 71 21 3490 4444
kdegraphics 509 147 22 4032 6452
kdelibs 3557 184 124 5262 20604
kdemultimedia 185 84 24 3210 4493
kdenetwork 553 132 31 4860 9012
kdepim 1944 181 57 7522 15990
kdesdk 686 157 32 4178 6727
kdetoys 86 46 16 2917 3193
kdeutils 333 109 31 3947 5858
kdevelop 375 57 15 6965 9085
kdewebdev 19 16 6 2920 2950
KDE 11170 185 230 30648 82662

6.3. Mining Sequences of Changed-Files
sqminer was executed on the transactions of the KDE modules
listed in Table 5. The mining of sequences of changed-files was
performed on a number of support values. The maximum number
of files (i.e., items) in a sequence was set to 20 in all the runs.
These support values were selected taking into account the two
observations (transaction density) mentioned in the previous
section (6.2). Here, the discussion and analysis of the results are
limited to a subset of the results. Our intention is to show the
distribution of the sequences found in the context of various tool
configurations.

Table 6 shows the sequences of changed-files found from the
transactions corresponding to the heuristics used in the mining
process. The number of sequences (S) found with a configuration

<frequent-sequences input="kdelibs-authordate">
<frequent-sequence size="2" support="6">
 <elements>
 <element temporal-position="1">
 <items>
 <item>plastik.cpp</item>
 <item>plastik.cpp</item>
 </items>
 </element>
 </elements>
 <idpairs>
 <idpair seqid="14" eventid="438971"/>
 <idpair seqid="116" eventid="449437"/>
 </idpairs>
</frequent-sequence>
</frequent-sequences>

50

of the minimum support (σmin), the maximum sequence size (|Em|)
along with the maximum number of files (|αm|), and the run-time
(T) are presented. Sequences were found for a range of minimum
support values (σmin). The heuristics Day and Day-Author found
sequences in all the cases. The heuristic Author did not report
sequences in three cases. The heuristic File and Author-File did
not report sequences in six cases. Finally, the heuristic Day-File
did not report any sequences in seven cases. There were no
sequences found for arts, kdewebdev, and kdeartwork.

Table 2. Sequences in kdelibs

Sequences with no of Elements kdelibs
1 2 3s 4 5 6 7 8 |S| |αm|

Day (3) 900 1304 593 58 1 - - - 2856 7
Author(3) 469 20793866 44012919 1214 272 1815232 8
File (15) 219 98 23 - - - - - 340 5

Day-Author(3) 717 274 36 - - - - - 1027 5

Day-File (15) 44 26 - - - - - 70 4

Author-File (15) 157 100 10 - - - - - 267 5

Table 3. Comparison of Itemsets and Sequences in kdelibs

 Itemset Sequences Ratio
kdelibs |I| |αm| |S| |αm| |S|/|I|

Day (3) 2193 7 2856 7 1.3
Author(3) 9575 8 15232 8 1.6
File (15) 263 5 340 5 1.3
Day-Author(3) 907 5 1027 5 1.13
Day-File (15) 55 4 70 4 1.27
Author-File (15) 190 5 267 5 1.41

The results presented in Table 6 shows that sequences of changed-
files are found from the log-entries using our approach. However,
it remains to be seen that the supplementary information in
sequences is useful. To facilitate the discussion, kdelibs is taken
as a representative. Table 2 shows the sequences of changed-files
found by applying each of the six heuristics and the min-support
value (e.g., 3). In case of the heuristic Author, more than 15,000
sequences were reported. Further, the distribution of these
sequences based on the number of elements it contains is also
shown. The maximum number of elements found in sequences
was reported to be 8. The maximum number of files found in
sequences was also reported to be 8.

These results give interesting insights into the software evolution
process used by kdelib authors. The long sequences of changed-
files under the heuristic Author indicate that related changes are
committed in small increments spreading across multiple change-
sets (revisions). Furthermore, examining the results under the
heuristics Day-Author, the sequences are fewer and relatively
smaller in size. This means that related changes are typically not
committed on the same day and by the same author. This
information leads to the hypothesis that related changes for a high-
level modification (e.g., feature or bug-fix) are performed in
incremental steps. Even if this hypothesis is not verified, we at
least have the historical dependencies between high-level changes.

Moreover, the importance of ordering can be seen for tasks such
as assisting a developer with the software-change process. For

example, if a sequence consisting of eight elements is treated as an
itemset, number of candidates of the combinatorial order may
need to be considered. This may lead to lack of precision as many
of these combinations may turn-out to be false-positives.

Based on the prior discussion, we provided a case for sequences
giving more concise information for tasks such as software-
change prediction. However, there is a possibility of a large
number of sequences (combinatorial order) being produced
compared to itemsets. Our approach facilitates decision-making
on this issue. The sequences are also reduced to itemsets and
output by sqminer. Table 3 facilitates the comparison of
sequences and itemsets of changed-files for kdelibs. In this case,
the number of sequences is less than twice the number of itemsets.
Each itemset is essentially ordered. Therefore, our approach
serves both the generalization (itemsets) and specialization
(sequences) cases.

Table 4. Example of Sequences of Changed-Files in kdelibs

kdelibs Sequences

{range.h} → {katedocument.cpp , katedocument.h}
Day
(3) {KDE4PORTING.html }

→ { kstringhandler.cpp, kstringhandler.h }
Author

(3) {generic.py} → {openssl.py}

{kstyle.h}→ {plastik.cpp} → {kstyle.cpp} Day-Author
(3) { kateregression.cpp } → { kateregression.cpp }

→ { range.cpp }

We conclude this section, with examples of sequences found in
kdelibs as shown in Table 4. The sequence shown in the heuristics
Day is partially ordered. The file range.h changed before
katedocument.cpp and kdatedocument.h. However, the order of
changes between katedocument.cpp and kdatedocument.h is
undecided. The sequence in the Day-Author demonstrates the
ordering between an interface file (kstyle.h) and an
implementation file (kstyle.cpp).

7. RELATED WORK
We briefly discuss approaches utilizing information found in
source-code repositories maintained by tools such as CVS and
Subversion with a focus on software changes.

Zimmerman et al [20, 21] used CVS logs for detecting
evolutionary coupling between source-code entities. They
employed sliding window heuristics to estimate the atomic
commits (change-sets). Association-rules based on itemset
mining were formed from the change-sets and used for change-
prediction. Yang et al [18] used a similar technique for
identifying files that frequently change together. Gall et al [8]
used window-based heuristics on CVS logs for uncovering logical
couplings and change patterns, and German et al [9] for studying
characteristics of different types of changes. Hassan et al [11]
analyzed CVS logs for software-change prediction.

Van Rysselberghe et al [16] utilized CVS logs in their approach to
find frequently applied changes and presented a 2D visualization
technique to help recognize change-relevant information [17].
Bieman et al [3] used logs from software repositories to assist in

51

the computation of metrics for detecting change-prone classes.
Burch et al [4] presented a tool that supports visualization of
association rules and sequence rules. However, a very little
information is provided on how CVS transactions are processed
and sequences are mined. Beyer et al [2].used the log information
in visualizing clusters of frequently occurring co-changes. Dinh-

Trong et al [6] used CVS logs for validating previously developed
hypotheses on successful open source development. Chen et al [5]
incorporated the CVS commit messages in their source-code
search tool. El-Ramly et al [7] used sequence mining to detect
patterns of user activities from the system-user interaction data.

Table 5. Transactions formed by Application of Grouping Heuristics on the Log Information of the KDE Source-Code Repository

(No. of Transactions, No. of Events) Modules
Day Author File Day-Author Day-File Author-File

arts (1, 2) (1,2) (0, 0) (1, 2) (0, 0) (0, 0)
kde-common (72, 242) (8, 267) (11, 38) (64, 168) (5, 10) (9, 26)
kdeaccesibility (35 ,111) (6, 137) (63, 212) (31, 93) (12, 27) (57, 170)
kdeaddons (31, 104) (8, 133) (52 , 173) (29, 94) (18, 36) (44, 150)
kdeadmin (18, 51) (6, 73) (33, 84) (16, 46) (9, 18) (26, 60)
kdeartwork (13, 68) (5, 80) (17, 40) (13, 64) (10, 22) (15, 35)
kdebase (157, 1348) (63, 1337) (484, 1501) (235, 1049) (119, 256) (349, 879)
kdebindings (21, 94) (4, 111) (17, 121) (21, 86) (18, 64) (20, 118)
kdeedu (123, 752) (25, 760) (344, 1371) (164, 626) (168, 424) (331, 1104)
kdegames (32, 156) (9, 178) (54, 154) (30, 139) (8, 16) (46, 104)
kdegraphics (109, 427) (14, 453) (131, 520) (96, 335) (41, 95) (122, 429)
kdelibs (182, 3304) (89, 3271) (911, 3757) (605, 2720) (420, 977) (719, 2281)
kdemultimedia (37, 116) (13, 146) (55, 175) (37, 100) (8, 16) (54, 128)
kdenetwork (95, 456) (25, 482) (194, 648) (104, 390) (70, 146) (152, 464)
kdepim (166, 1668) (46, 1671) (686, 2186) (330, 1365) (203, 444) (557, 1563)
kdesdk (125, 618) (19, 637) (145, 486) (141, 517) (53, 121) (132, 427)
kdetoys (20, 58) (6, 70) (42, 132) (17, 49) (14, 28) (36, 115)
kdeutils (63, 251) (22, 281) (126, 437) (66, 212) (55, 126) (106, 344)
kdevelop (28, 294) (9, 309) (177, 713) (32, 282) (170, 592) (170, 676)
kdewebdev (2, 4) (3, 12) (6, 12) (2, 4) (0, 0) (0, 0)
KDE (185, 10092) (183, 10047) (3373, 12142) (1659,8753) (1274, 2954) (2773, 8496)

Table 6. Sequences found from the Log Information of the KDE Source-Code Repository

|S|– No. of Sequences, |Em| (|αm|)- Max Element-Size (Max) Item-size, and σmin. used in Mining,
T – Run-time in Seconds

Day Author File Day-Author Day-File Author-File Modules
|S|

(σmin) |Em| T. |S|
(σmin) |Em| T. |S|

(σmin) |Em| T. |S|
(σmin) |Em| T. |S|

(σmin) |Em| T. |S|
(σmin) |Em| T.

kde-common 30(3) 3(3) <1 223(3) 6(6) 6 0 - - 15(3) 2(2) <1 0 - - 0 - -
kdeaccesibility 22(3) 2(2) <1 1(3) 1(1) <1 44(10) 1(3) <1 12(3) 2(2) <1 0 - - 19(10) 1(2) <1
kdeaddons 14(3) 1(7) <1 1(3) 1(1) <1 - - 137(3) 1(7) <1 31(10) 1(5) <1 0 - -
kdeadmin 5(3) 1(1) <1 0 - - 1(10) 1(1) <1 5(3) 1(1) <1 0 - - 0 - -
kdebase 309(3) 2(2) 8 216(3) 3(4) 35 3(25) 1(1) <1 193(3) 2(2) 1 1(10) 1(1) <1 0 - -
kdebindings 31(3) 2(3) <1 0 - - 0 - - 27(3) 2(3) <1 4(10) 1(1) <1 2(10) 1(1) <1
kdeedu 518(3) 3(4) 3 1152(3) 5(6) 7 11(25) 2(2) <1 390(3) 3(3) 1 4(25) 1(1) <1 11(25) 2(2) <1
kdegames 12(3) 2(2) <1 6(3) 2(2) <1 5(10) 1(2) <1 8(3) 2(2) <1 0 - - 1(10) 1(1) <1
kdegraphics 138(3) 3(3) <1 55(3) 3(4) 1 0 - - 103(3) 2(4) <1 4(10) 1(1) <1 1(25) 1(1) <1
kdelibs 2856(3) 5(5) 427 15232(3) 8(8) 2247 39(25) 2(2) 10 1027(3) 3(4) 23 19(25) 2(3) <1 36(25) 2(2) 2
kdemultimedia 19(3) 1(2) <1 35(3) 4(4) <1 17(10) 1(3) <1 17(3) 1(1) <1 0 - - 23(10) 1(4) <1
kdenetwork 215(3) 2(5) 1 67(3) 2(2) <1 0 - - 186(3) 2(5) 1 163(10) 2(7) <1 0 - -
kdepim 770(3) 3(3) 17 749(3) 6(7) 20 7(25) 1(1) <1 634(3) 2(4) 3 0 - - 4(25) 1(1) <1
kdesdk 102(3) 3(3) <1 12(3) 2(3) <1 0 - - 79(3) 3(3) <1 2(10) 1(1) <1 0 - -
kdetoys 9(3) 1(2) <1 0 - - 1528(10) 2(9) 2 7(3) 1(1) <1 0 - - 1527(10) 2(9) 4
kdeutils 87(3) 3(3) <1 20(3) 2(2) <1 1(25) 1(1) <1 70(3) 3(3) <1 35(10) 2(3) <1 75(10) 3(4) 1
kdevelop 88(3) 3(4) <1 2(3) 1(1) <1 2(25) 2(2) 1 82(3) 3(4) <1 2(25) 2(2) 1 2(25) 2(2) 1
KDE 119(10) 2(3) 13 14(10) 2(2) 2 61(25) 2(2) 15 4301(3) 3(4) 350 23(25) 2(3) 1 52(25) 2(2) 4

52

8. CONCLUSIONS AND FUTURE WORK
We investigated the problem of mining ordered sequences of
changed-files from the change-sets found in source-code
repositories. Six heuristics were examined to form input
transactions with ordered change-sets. A toolset was developed to
uncover the sequences of changed-files from the change-sets. A
case-study on the KDE project shows that our approach is able to
find ordered sequences of changed-files ranging from none to
thousands. In our experience, the number of sequences is found to
be closely bounded to the number of itemsets. We formed a
hypothesis that sequences can be used to better predict and
analyze the software evolutionary process.

In future, we plan to assess the effectiveness of the sequences of
changed-files for the task of software-change prediction.
Sequences of source-code entities such as classes, methods,
statements, and expressions will be analyzed and compared. Also,
we plan to integrate grouping heuristics based on the textual
contents of comments in the change-sets and other repositories
(e.g., Bugzilla).

9. REFERENCES
[1] Agrawal, R. and Srikant, R. Mining Sequential Patterns in

Proceedings of Eleventh International Conference on Data
Engineering (Taipei, Taiwan, March, 1995).

[2] Beyer, D. and Noack, A. Clustering Software Artifacts
Based on Frequent Common Changes in Proceedings of
13th International Workshop on Program Comprehension
(IWPC'05) (St. Louis, Missouri, USA, May 15-16, 2005),
259-268.

[3] Bieman, J. M., Andrews, A. A., and Yang, H. J.
Understanding Change-Proneness in OO Software Through
Visualization in Proceedings of 11th IEEE International
Workshop on Program Comprehension (IWPC'03) (2003),
44-53.

[4] Burch, M., Diehl, S., and Weißgerber, P. Visual Data
Mining in Software Archives in Proceedings of Proceedings
of the 2005 ACM symposium on Software visualization (St.
Louis, Missouri, May 14-15, 2005), 37-46.

[5] Chen, A., Chou, E., Wong, J., Yao, A. Y., Zhang, Q.,
Zhang, S., and Michail, A. CVSSearch: Searching through
Source Code using CVS Comments in Proceedings of
Proceedings IEEE International Conference on Software
Maintenance (ICSM'01) (2001), 364-373.

[6] Dinh-Trong, T. T. and Bieman, J. M. The FreeBSD Project:
a Replication Case Study of Open Source Development.
IEEE Transactions on Software Engineering, 31, 6 (2005),
481-494.

[7] El-Ramly, M. and Stroulia, E. Mining Software Usage Data
in Proceedings of International Workshop on Mining
Software Repositories (MSR'04) (2004), 64-8.

[8] Gall, H., Hajek, K., and Jazayeri, M. Detection of Logical
Coupling based on Product Release History in Proceedings
of International Conference on Software Maintenance
(ICSM'98) (1998), 190-199.

[9] German, D. M. An Empirical Study of Fine-Grained
Software Modifications in Proceedings of 20th IEEE
International Conference on Software Maintenance
(ICSM'04) (2004), 316-25.

[10] German, D. M. Mining CVS Repositories, the SoftChange
Experience in Proceedings of International Workshop on
Mining Software Repositories (MSR'04) (2004), 17-21.

[11] Hassan, A. E. and Holt, R. C. Predicting Change
Propagation in Software Systems in Proceedings of 20th
IEEE International Conference on Software Maintenance
(ICSM'04) (2004), 284-93.

[12] Huang, S.-K. and Liu, K.-m. Mining Version Histories to
Verify the Learning Process of Legitimate Peripheral
Participants in Proceedings of International Workshop on
Mining Software Repositories (MSR'05) (St. Louis,
Missouri, May 17, 2005), 84-78.

[13] Lopez-Fernandez, L., Robles, G., and Gonzalez-Barahona,
J. M. Applying Social Network Analysis to the Information
in CVS Repositories in Proceedings of International
Workshop on Mining Software Repositories (MSR'04) (May
25, 2004), 101-105.

[14] Mockus, A., Fielding, T., and Herbsleb, D. Two Case
Studies of Open Source Software Development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11, 3 (July 2002 2002), 309-346.

[15] Tu, Q. and Godfrey, M. W. An Integrated Approach for
Studying Architectural Evolution in Proceedings of 10th
International Workshop on Program Comprehension
(IWPC'02) (2002), 127-136.

[16] Van Rysselberghe, F. and Demeyer, S. Mining Version
Control Systems for FACs (Frequently Applied Changes) in
Proceedings of International Workshop on Mining Software
Repositories (MSR'04) (May 25, 2004), 48-52.

[17] Van Rysselberghe, F. and Demeyer, S. Studying Software
Evolution Information By Visualizing the Change History in
Proceedings of 20th IEEE International Conference on
Software Maintenance (2004), 328-37.

[18] Ying, A. T. T., Murphy, G. C., Ng, R., and Chu-Carroll, M.
C. Predicting Source Code Changes by Mining Change
History. IEEE Transactions on Software Engineering, 30, 9
(September 2004), 574 - 586.

[19] Zaki, M. J. SPADE: An Efficient Algorithm for Mining
Frequent Sequences. Machine Learning, 42, 1-2 (January
2001), 31 - 60.

[20] Zimmermann, T., Weibgerber, P., Diehl, S., and Zeller, A.
Mining version histories to guide software changes in
Proceedings of 26th International Conference on Software
Engineering (2004), 563-72.

[21] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S.
Mining Version Histories to Guide Software Changes. IEEE
Transactions on Software Engineering, 31, 6 (2005), 429-
445.

53

MAPO: Mining API Usages from Open Source Repositories

Tao Xie
Department of Computer Science

North Carolina State University
Raleigh, NC 27695

xie@csc.ncsu.edu

Jian Pei
School of Computing Science

Simon Fraser University
Burnaby, BC Canada V5A 1S6

jpei@cs.sfu.ca

ABSTRACT
To improve software productivity, when constructing new software
systems, developers often reuse existing class libraries or frame-
works by invoking their APIs. Those APIs, however, are often com-
plex and not well documented, posing barriers for developers to use
them in new client code. To get familiar with how those APIs are
used, developers may search the Web using a general search engine
to find relevant documents or code examples. Developers can also
use a source code search engine to search open source repositories
for source files that use the same APIs. Nevertheless, the number
of returned source files is often large. It is difficult for develop-
ers to learn API usages from a large number of returned results.
In order to help developers understand API usages and write API
client code more effectively, we have developed an API usage min-
ing framework and its supporting tool called MAPO (for Mining
API usages from Open source repositories). Given a query that de-
scribes a method, class, or package for an API, MAPO leverages
the existing source code search engines to gather relevant source
files and conducts data mining. The mining leads to a short list of
frequent API usages for developers to inspect. MAPO currently
consists of five components: a code search engine, a source code
analyzer, a sequence preprocessor, a frequent sequence miner, and
a frequent sequence postprocessor. We have examined the effec-
tiveness of MAPO using a set of various queries. The preliminary
results show that the framework is practical for providing informa-
tive and succinct API usage patterns.

Categories and Subject Descriptors: D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement

General Terms: Design, Documentation, Measurement.

Keywords: Application Programming Interfaces, Program Com-
prehension, Mining Software Repositories.

1. INTRODUCTION
During software development, by invoking the corresponding

APIs, developers often reuse existing class libraries or frameworks
to write client code. These APIs, being equipped with only sim-
ple API documents, however, are often complex and not well doc-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

umented. For example, suppose we plan to use the Byte Code
Engineering Library (BCEL) [9] to instrument the bytecode of a
Java class by adding an extra method to the class (This program-
ming task was faced by the first author when developing a dynamic
analysis tool). By a quick search on BCEL’s API document, we can
find a class called org.apache.bcel.generic.ClassGen con-
taining a method called public void addMethod(Method m),
which seems to be the right API method to use. From the API doc-
ument for this method, we only see a simple description for the
method: “Add a method to this class. Parameters: m - method to
add.” We still do not know how to use this method, in particu-
lar, how to prepare the Method object, what method calls should
be invoked on this Method object before addMethod is invoked,
and what method calls are needed to be invoked on the ClassGen
object before and after the addMethod is invoked, and so forth.

Because the API document does not provide sufficient informa-
tion for us to learn how to use the API, we can search the Web using
a general search engine, say Google, to look for other developers’
experience of using the API. We can indeed find some articles that
include code segments to briefly explain specific usages of BCEL.
However, because the same API can be used in different ways, we
still do not have high confidence on whether the described code seg-
ments represent the API usage that we should follow. We can also
use some code search engines such as the Koders search engine [3]
and the SPARS-J search engine [5, 13]. These search engines re-
trieve from open source repositories a long list of source files that
contain the call sites of the addMethod method. Nevertheless, the
numerous and improperly sorted results returned by those source
code search engines cannot quickly and comprehensively help us
understand the commonality among these source files.

Only collecting a set of call sites or code segments is far from
enough to support developers’ learning of API usage. Developers
are interested in the inherent usage patterns of APIs. Thus, the real
challenge is how to construct a tool to analyze the code segments
and disclose the inherent usage patterns, which motivates this re-
search.

In order to help developers understand API usages and write API
client code more effectively, we have developed an API usage min-
ing framework and its supporting tool called MAPO (for Mining
API usages from Open source repositories) by leveraging the exist-
ing code search engines. The mining produces a short list of fre-
quent API usage patterns for developers to inspect. MAPO consists
of five components: a code search engine, a source code analyzer,
a sequence preprocessor, a frequent sequence miner, and a frequent
sequence postprocessor. To examine its effectiveness, we have ap-
plied the MAPO tool on a set of various queries. The preliminary
results show that the framework is practical for providing informa-
tive and succinct API usage patterns.

54

2. MAPO DESIGN CONSIDERATIONS
In MAPO, we want to achieve the following four objectives.

1. The tool should be able to extract API usage information
from a source file that may not be able to be compiled by
a compiler, because a source code search engine may not re-
turn all other source files that the source file depends on.

2. The tool should be able to infer frequent API usages that
include sequencing information among method calls. The
sequencing information is an important part of API usages.
For example, the open method of a File object needs to be
invoked before the read method.

3. The tool should be able to mine frequent API usages that in-
clude method calls from more than one class, because realis-
tic API usages often involve methods from multiple classes.

4. The tool should be able to produce a short list of relevant
frequent API usage patterns for inspection.

3. CHOICES OF MINING TOOLS
Given a set of code segments, a user wants to obtain the com-

mon usage patterns of APIs. A few data mining techniques may be
applicable in such a situation.

Straightforwardly, for each code segment, we can obtain the set
of APIs used in the segment. Then, we can mine the combinations
of APIs appearing in many segments by applying the frequent item-
set mining methods such as Apriori [6] and FP-growth [10]. Given
a transaction database where each transaction is a set of items, and
a minimum support threshold min sup, a frequent itemset mining
method returns the complete set of item combinations that appear
in at least min sup transactions.

Frequent itemset mining provides the insights on which APIs
are frequently used together in code segments. However, it still
does not fully disclose the usage patterns. Particularly, frequent
itemsets do not indicate how a group of APIs may be invoked in
some specific order.

To capture the groups of APIs that are frequently used together
as well as the orders in which they are used, we mine sequential pat-
terns [7]. Given a database of sequences and a minimum support
threshold min sup, a sequential pattern mining algorithm returns
the complete set of frequent subsequences, called sequential pat-
terns, that appear in at least min sup sequences in the database.

The complete set of sequential patterns are informative for API
usage analysis. It, however, may contain redundant information.
For example, suppose methods open, read and close of a File
object are always called in the order of open-read-close. Then,
〈open〉, 〈read〉, 〈close〉, 〈open; read〉, 〈open; close 〉, 〈read;
close〉, and 〈open; read; close〉 are all sequential patterns with
the same frequency in the database. Pattern 〈open; read; close〉
should be used as the representative of the whole group of sequen-
tial patterns because it captures the complete usage information
that open, read, and close are used. Once pattern 〈open; read;
close〉 is identified, the other six patterns in the group become re-
dundant because they are sub-patterns of 〈open; read; close〉 and
have the same frequency. A pattern S such as 〈open; read; close〉
is called a closed sequential pattern if it is frequent and there exists
no any proper super-pattern of S having the same frequency as S.
In the API usage mining task, the complete set of closed sequential
patterns gives the complete yet non-redundant information on the
common usage patterns of APIs.

Finite state automaton (FSA) learning has been frequently used
to learn API protocols in the form of an FSA out of program-
execution traces [8, 16]. Given a set of sequences, an FSA learn-
ing algorithm reconstructs an FSA that can accept these sequences.

1. code
search
engine

3. sequence
preprocessor

2. code
analyzer

call
sequences

open source
repositories

query

source
files

call
sequences

4. frequent
sequence

miner

frequent
sequences

5. frequent
sequence

postprocessor

API
usages

Figure 1: An overview of the API usage mining framework.

In our research context, the sequences extracted from the results
of code search engines can include many irrelevant method calls;
therefore, applying FSA learning in our research context would
produce a large FSA, which is often not useful and not focusing.
A probabilistic FSA learning algorithm [18] can be used to infer a
probabilistic FSA where each edge is weighted by how often the
edge is traversed while accepting sequences. Infrequent behavior
reflected by those rarely-traversed edges can be removed to reduce
the complexity of the learned FSA. The resulting FSA, however,
would still be complicated.

4. API USAGE MINING FRAMEWORK
To automatically mine API usages from open source reposito-

ries, we have developed a novel framework based on existing code
search engines and a frequent sequence miner. Figure 1 shows the
overview of the framework. The framework receives a query de-
scribing a method name, class name, or package name, and outputs
a set of API usages (in the form of method call sequences). The
framework consists of five major components: a code search en-
gine, a code analyzer, a sequence preprocessor, a frequent-sequence
miner, and a frequent-sequence postprocessor. The code search en-
gine receives a query and then searches open source repositories
for source files that are relevant to the query. The code analyzer
analyzes the relevant source files returned by the code search en-
gine and produces a set of method call sequences, each of which is
a callee sequence for a method defined in the source files. The se-
quence preprocessor inlines some call sequences into others based
on caller-callee relationships and removes some irrelevant call se-
quences from the set of call sequences according to the given query.
The frequent-sequence miner discovers frequent sequences from
the preprocessed sequences. The frequent-sequence postprocessor
reduces the set of frequent sequences in some ways. We next illus-
trate each of the components in the framework in detail.

4.1 Code Search Engine
There exist a number of code search engines1. Among the non-

academic search engines, we found that Koders [3], CodeBase [1],
and DocJar [2] can return a list of Java source files given the tex-
tual query of “bcel.” SPARS-J [5] developed by Inoue et al. [13]
is one of the few academic code search engines. Like the preceding
non-academic engines, SPARS-J can also return source files given
the textual query of “bcel.” Currently we have not committed our
development efforts to develop a tool for automatically grabbing

1http://gonzui.sourceforge.net/links.html

55

source files returned by various search engines. Instead, we manu-
ally download source files from the returned set of links. We plan
to implement a tool to automate this task in the future. Note that al-
though our framework is based on a code search engine, the source
files used for API usage mining can also be collected directly from
any source repositories, such as local source repositories within a
software company or a combination of open and local source repos-
itories.

4.2 Source Code Analyzer
To extract method-call sequences from source files, we have de-

veloped a source code analyzer based on a lightweight source code
analyzer PMD [4], which does not require source files to be com-
pilable. From each source file, the code analyzer extracts a list of
methods, each of which is associated with a sequence of method
calls invoked by the method. Currently we count the number of
method parameters to characterize method signatures in method-
call names. We ignore control flows but simply use call-site loca-
tions when extracting method-call sequences. Note that method-
call sequences can include method calls from more than one class;
therefore, we can later infer from them API usages involving more
than one class.

We incorporate various techniques in the source code analyzer to
try to collect the class name and the full package name (called full
class name) for each method call. The preceding task is not trivial
when the classes that a source file depends on are unavailable. We
keep track of field declarations and local variable declarations so
that we can know the class name of a method call based on the re-
ceiver object name. We keep track of import statements so that we
can know the full package name of a class based on the class name
if the class is explicitly exported in the import statements. We
construct a map from method-call names to their full class names
across various source files in the first pass of the analysis. Then, in
the second pass, for those method calls whose full class names can-
not be found, we assign to them full class names if we can find the
same method-call names in the map. In the end, we filter out from
the extracted method call sequences those method calls whose full
class names cannot be found.

4.3 Sequence Preprocessor
We have developed several techniques to improve the quality of

extracted method-call sequences before they are fed to a mining
tool. First, we filter out those method calls whose full class names
start with “java.”: those are commonly used Java library classes.
Including them in the sequences is often not necessary.

Second, when ee is the callee of a caller er, and the method-call
sequence of ee is ms, we inline ee by replacing all occurrences
of ee with ms in the method-call sequence of er. We perform the
inlining process for three iterations by default, allowing us to col-
lect method sequences up to the call depth of three. Note that if a
call sequence pattern is spread across several source files or the call
depth of three, MAPO cannot recognize it completely.

Finally, from the set of inlined sequences, we remove method-
call sequences that do not contain the given query entity (e.g.,
method name, class name, or package name), because these se-
quences are not relevant to the given query entity.

4.4 Frequent Sequence Miner
We use the BIDE [19] algorithm to mine closed sequential pat-

terns from the preprocessed method-call sequences. BIDE enu-
merates closed sequential patterns in a depth-first search. For ex-
ample, suppose A, B, C, and D are the APIs in question. Then,
the complete set of closed sequential patterns can be divided into

Table 1: API usage mining results
query #files #seqs #seqs-pre #freqseq #freqseq-post
BCEL 36 1087 186 429 8
Javassist 50 828 141 90 23

four exclusive subsets: the ones having 〈A〉, 〈B〉, 〈C〉, and 〈D〉 as
prefixes, respectively. Each subset is further divided recursively.

In the depth-first search, once a sequence S is encountered
whose frequency in the database is smaller than the support thresh-
old, BIDE does not need to search any longer sequence S′ that has
S as a prefix, because the frequency of S′ cannot exceed that of S.

Moreover, once a frequent sequence S is met, all APIs that ap-
pear in every sequence that contains S in the database are also
extracted and a closed sequential pattern is formed. On the other
hand, if S is a sub-sequence of a closed sequential pattern S′ and
S and S′ have the same frequency, then BIDE does not need to
recursively search the subtree of S, because it is not closed.

BIDE also uses a few techniques to speed up the search, such
as searching using projected databases and the pseudo-projection
technique. Limited by space, we omit the details here.

4.5 Frequent Sequence Postprocessor
Because the number of frequent sequences mined by BIDE could

be large, we have developed several techniques to reduce the size of
frequent sequences without compromising important API usage in-
formation. First, we remove frequent sequences that do not contain
the given query entity (e.g., method name, class name, or pack-
age name), because these frequent sequences are not relevant to
the query entity. Second, in frequent sequences, we compress con-
secutive calls of the same method into one. Alteratively we can
compress method-call sequences in a similar way in the sequence
preprocessor but doing compression here can help compress repet-
itive call patterns separated by infrequent method calls in original
call sequences. Third, we remove duplicate frequent sequences af-
ter the compression. Finally, we further reduce the set of frequent
sequences so that every frequent sequence in the reduced set is not
a subsequence of another in the reduced set. We adapted the imple-
mentation of the longest common sequences (LCS) [11] algorithm
to implement the subsequence checking.

5. PRELIMINARY RESULTS
We have applied MAPO on various queries. This section shows

two particular queries that are related to the motivating example
shown in Section 1. We searched Koders [3] with two queries: the
textual BCEL query of “org.apache.bcel.generic ClassGen
addMethod” and the textual Javaassist query of “javassist
CtClass addMethod,” where we replace those dots that separate
package names, class names, and method names with space char-
acters in order to allow Koders to return more related results. The
method in the Javaassist query has the same functionality as the
method in the BCEL query but these two methods are from two
different libraries.

Table 1 show the statistics of the API usage mining results for
these two queries. Columns 1-6 show the query name, the number
of source files returned by Koders, the number of sequences ex-
tracted by the code analyzer, the number of sequences produced by
the sequence preprocessor, the number of frequent sequences pro-
duced by BIDE, and the number of frequent sequences produced
by the frequent sequence postprocessor, respectively. From the sta-
tistics, we can observe that the sequence preprocessor is effective
in reducing the size of sequences before being fed to BIDE, and the
frequent sequence postprocessor is also effective in reducing the
size of frequent sequences before being inspected by users.

56

We inspected the frequent patterns produced by MAPO and
found them precise in general in characterizing the API usages. For
example, for the BCEL query, the first frequent sequence is listed
as below where package names are omitted for simplicity, the en-
closed numbers represent the total number of method parameters if
any, and “<init>” represents a constructor call.
InstructionList.<init>
InstructionFactory,createLoad(2)
InstructionList,append(1)
InstructionFactory,createReturn(1)
InstructionList,append(1)
MethodGen,setMaxStack
MethodGen,setMaxLocals
MethodGen,getMethod
ClassGen,addMethod(1)
InstructionList.dispose

The API usages mined by MAPO for the Javassist query are sim-
pler and also more diverse than the ones for the BCEL query. The
first frequent sequence is simply two method calls:
CtNewMethod,make(2)
CtClass,addMethod(1)

6. RELATED WORK
CodeWeb developed by Michail [17] mines association rules

such as that application classes inheriting from a particular li-
brary class often instantiate another class or one of its descendants.
MAPO focuses on API usages in general beyond library reuse pat-
terns through class inheritances. In addition, MAPO mines API us-
ages that include sequencing information among method calls. PR-
Miner developed by Li and Zhou [14] uses frequent itemset mining
to extract implicit programming rules and detect their violations
for detecting bugs. The rules mined by PR-Miner do not include se-
quencing information, which is mined by MAPO. A tool developed
by Williams and Hollingsworth [20] and DynaMine developed by
Livshits and Zimmermann [15] mine simple rules from software re-
vision histories. These rules involve mostly method pairs, whereas
MAPO mines more complicated API usage patterns from code seg-
ments returned by a code search engine. Different from all the pre-
ceding mining tools, which take no query before mining, MAPO
takes a query and mines from code segments relevant to the query.

MAPO is related to a number of code search engines [3,5,13] as
well as the Strathcona tool developed by Holmes and Murphy [12].
Strathcona locates a set of relevant code examples from an exam-
ple repository by matching the structure of the code under devel-
opment with the code examples in the repository. Like other code
search engines, Strathcona returns a list of relevant code examples,
whereas MAPO can extract common patterns among the list of
relevant code examples returned by a code search engine or even
Strathcona.

7. CONCLUSIONS
In order to help developers understand API usages and write API

client code more effectively, we have developed a novel framework
and its supporting tool called MAPO for mining API usages from
open source repositories by leveraging existing code search engines
and a frequent sequence miner. MAPO can produce a short list of
succinct frequent sequences for inspection. Our preliminary results
show that MAPO provides useful API usage patterns for develop-
ers to inspect. In future work, we plan to synthesize code frag-
ments from mined frequent API usages. These synthesized code
fragments can be directly inserted into developers’ code.

Acknowledgments
We would like to thank Jiawei Han and Jianyong Wang for helping
us to use the BIDE tool.

8. REFERENCES
[1] CodeBase, 2005. http://www.codase.com/.
[2] DocJar, 2005. http://www.docjar.com/.
[3] The Koders source code search engine, 2005.

http://www.koders.com.
[4] PMD, 2005. http://pmd.sourceforge.net/.
[5] SPARS-J, 2005. http://demo.spars.info/.
[6] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proc. 1994 Int. Conf. Very Large Data
Bases, pages 487–499, Sept. 1994.

[7] R. Agrawal and R. Srikant. Mining sequential patterns. In
Proc. 1995 Int. Conf. Data Engineering, pages 3–14, Taipei,
Taiwan, Mar. 1995.

[8] G. Ammons, R. Bodik, and J. R. Larus. Mining
specifications. In Proc. 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
4–16, 2002.

[9] M. Dahm and J. van Zyl. Byte Code Engineering Library,
April 2003. http://jakarta.apache.org/bcel/.

[10] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In Proc. 2000 ACM-SIGMOD Int.
Conf. Management of Data, pages 1–12, May 2000.

[11] D. S. Hirschberg. Algorithms for the longest common
subsequence problem. Journal of the ACM, 24:644–675,
1977.

[12] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In Proc. 27th
International Conference on Software Engineering, pages
117–125, 2005.

[13] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto,
M. Matsushita, and S. Kusumoto. Ranking significance of
software components based on use relations. IEEE
Transactions on Software Engineering, 31(3):213–225,
March 2005.

[14] Z. Li and Y. Zhou. PR-Miner: automatically extracting
implicit programming rules and detecting violations in large
software code. In Proc. ESEC/FSE, pages 306–315, 2005.

[15] B. Livshits and T. Zimmermann. DynaMine: finding
common error patterns by mining software revision histories.
In Proc. ESEC/FSE, pages 296–305, 2005.

[16] L. Mariani and M. Pezzè. Behavior capture and test:
Automated analysis of component integration. In Proc. 10th
International Conference on Engineering of Complex
Computer Systems, pages 292–301, June 2005.

[17] A. Michail. Data mining library reuse patterns using
generalized association rules. In Proc. 22nd International
Conference on Software Engineering, pages 167–176, 2000.

[18] A. V. Raman and J. D. Patrick. The sk-strings method for
inferring pfsa. In Proc. Workshop on Automata Induction,
Grammatical Inference and Language Acquisition, 1997.

[19] J. Wang and J. Han. BIDE: Efficient mining of frequent
closed sequences. In Proc. 20th International Conference on
Data Engineering, pages 79–90, 2004.

[20] C. C. Williams and J. K. Hollingsworth. Recovering system
specific rules from software repositories. In Proc. 2005
International Workshop on Mining Software Repositories,
pages 1–5, 2005.

57

Program Element Matching for Multi-Version Program
Analyses

Miryung Kim, David Notkin
Computer Science & Engineering

University of Washington
Seattle, WA

{miryung,notkin}@cs.washington.edu

ABSTRACT
Multi-version program analyses require that elements of one
version of a program be mapped to the elements of other ver-
sions of that program. Matching program elements between
two versions of a program is a fundamental building block
for multi-version program analyses and other software evolu-
tion research such as profile propagation, regression testing,
and software version merging.

In this paper, we survey matching techniques that can be
used for multi-version program analyses and evaluate them
based on hypothetical change scenarios. This paper also lists
challenges of the matching problem, identifies open prob-
lems, and proposes future directions.

Categories and Subject Descriptor: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement
—restructuring, reverse engineering, and reengineering

General Terms: Documentation, Algorithms

Keywords: matching, software evolution, multi-version anal-
ysis

1. INTRODUCTION
In the last several years, researchers in software engineer-

ing have begun to analyze programs together with their
change history. In contrast to traditional program analyses
that examine a single version, multi-version program anal-
yses use multiple versions of a program as input and mine
change patterns.

There are roughly two different types of multi-version
analyses: (1) coarse-grained analyses and (2) fine-grained
analyses. Coarse-grained analyses compute changes between
two consecutive versions of a program, aggregate the change
information across multiple versions or across multiple files,
and infer coarse-grained patterns [37, 15, 20, 17]. For ex-
ample, Nagappan and Ball’s analysis [37] finds line-level
changes between two consecutive versions, counts the total
number of changes per binary module, and infers the charac-
teristics of frequently changed modules. On the other hand,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

fine-grained analyses track how individual code fragments
changed during program evolution to infer fine-grained change
patterns [29, 31, 52, 38, 43, 48, 51, 11]. For example, a
clone genealogy extractor tracks individual code snippets
over multiple versions to infer clone evolution patterns [29].
As another example, a signature change pattern analysis
[31, 30] traces how the name and the signature of functions
change. Matching elements between two versions of a pro-
gram is a fundamental building block for fine-grained multi-
version analyses as well as other software evolution research
such as software version merging, regression testing, profile
propagation, etc [36, 42, 21, 46].

We first define the problem of matching code elements
between two versions:

Suppose that a program P ′ is created by modifying P . De-
termine the difference Δ between P and P ′. For a code
fragment c′ ∈ P ′, determine whether c′ ∈ Δ. If not, find
c′’s corresponding origin c in P.

The problem definition states that we must compute the
difference between two programs. Computing semantic dif-
ferences requires solving the problem of semantic program
equivalence, which is an undecidable problem. Thus, once
the problem is approximated by matching a code element
by its syntactic and textual similarity, solutions depend on
the choices of (1) an underlying program representation,
(2) matching granularity, (3) matching multiplicity, and (4)
matching heuristics. In this paper, we explain how the
choices impact applicability of each matching method and
how the choices affect effectiveness and accuracy of matching
by creating an evaluation framework for existing matching
techniques.

The rest of this paper is organized as follows. The next
section discusses several multi-version analyses, which demon-
strate the needs of program element matching. Then, we
discuss challenges of program element matching in Section
3. Section 4 presents a survey of state-of-the-art match-
ing techniques from various research areas such as multi-
version program analyses, profile propagation, software ver-
sion merging, and regression testing. Section 5 compares
the surveyed techniques and Section 6 evaluates each tech-
nique using hypothetical program change scenarios. Section
7 presents open problems and future directions.

2. MOTIVATING PROBLEMS
In this section, we describe several multi-version analysis

problems that demonstrate importance of program element
matching.

The first problem is maintaining two similar programs

58

that originated from the same source but evolved differently
in parallel.1 In many organizations, it is a common practice
to clone a product or a module and maintain the clones in
parallel [13]. Maintenance difficulties arise when program-
mers discover a critical bug in cloned parts. If program-
mers do not know whether the discovered bug is relevant to
other cloned counterparts, they must inspect source code of
the counterparts. We believe that programmers can better
locate relevant counterparts by understanding how clones
change over time. Monitoring clones requires tracking each
clone by its physical location such as a file name, a procedure
name, or calibrated line numbers [29].

Our second motivating problem is understanding the evo-
lution of information hiding interfaces. The information hid-
ing principle [41] states that programmers should anticipate
what kinds of decisions are likely to change in the future and
hide them using an interface. In general, it is difficult for
programmers to predict which design decisions are likely to
change; thus, unanticipated design decisions result in degra-
dation of original software design. We believe that under-
standing interface evolution can shed light on (1) which de-
cisions were originally hidden but later exposed and (2) how
unanticipated decisions impact original interface design.

In addition to the problems above, type change analysis
[38], signature change analysis [31], and instability analysis
[11] also require matching program elements in order to track
code elements over time.

3. MATCHING CHALLENGES
This section lists challenges of program element matching.

3.1 Absence of Benchmarks
It is difficult to evaluate matching techniques because

there is no reference data set or archive of editing logs.
Previous studies [30] also indicate that programmers often
disagree about the origin of code snippets; low inter-rater
agreement suggests that there may be no ground truth in
program element matching.

3.2 Various Granularity Support
With respect to our motivating problems in Section 2,

we cannot assume that programmers intend to track pro-
gram elements at a fixed granularity. There are two reasons
why matching techniques must support various granular-
ity. First, a programmer may want to track design decisions
that cannot be mapped to program units precisely. Second,
a programmer may want track program elements at a dif-
ferent granularity depending on the nature of tasks. For
example, if matching techniques are to be used for profile
propagation or precise regression test selection, mappings
should be found at a fine granularity such as at the level of
control flow graph edges [42] or at the level of code blocks
[46, 44]. On the other hand, if a programmer wants to use
matching results for program understanding tasks, it would
be more appropriate to find associations at a higher level
such as a file.

3.3 Types of Code Changes
Certain types of code changes make the matching prob-

lem non-trivial. For example, tracking code by its enclosing

1In an open source project community, this practice is often
called as forking.

procedure name would fail if programmers merged, split,
or renamed procedures. When a programmer copies code,
matching techniques cannot assume one-to-one mappings
between old elements and new elements because an old code
element can have more than one matching descendants in a
new version.

4. MATCHING TECHNIQUES
This section describes matching techniques used for soft-

ware version merging, program differencing, profile propaga-
tion, regression testing, and multi-version program analyses.
For easy comparison, we group techniques by program rep-
resentation. We describe clone detectors and tools that infer
refactoring events in Section 4.7 and 4.8 because these tools
can be leveraged for finding correspondences between two
versions.

4.1 Entity Name Matching
The simplest matching method treats program elements

as immutable entities with a fixed name and matches the
elements by name. For example, Zimmermann et al. mod-
eled a function as a tuple, (file name, FUNCTION, function
name), and a field as a tuple, (function name, FIELD, field
name) [51]. Similarly, Ying et al. [48] modeled a file with its
full path name. In fact, matching by name would be suffi-
cient for many multi-version analyses that intend to identify
coarse-grained patterns such as the characteristics of fault
prone modules [15, 20, 37].

4.2 String Matching
When a program is represented as a string, the best match

between two strings is computed by finding the longest com-
mon subsequence (LCS) [7]. The LCS problem is built on
the assumption that (1) available operations are addition
and deletion, and (2) matched pairs cannot cross one an-
other. Thus, the longest common subsequence does not
necessarily include all possible matches when available edit
operations include copy, paste, and move. Tichy [45] (bdiff)
extended the LCS problem by relaxing the two assumptions
above: permitting crossing block moves and not requiring
one-to-one correspondence.

The line-level LCS implementation, diff [25], has served as
basis for many multi-version analyses, because (1) diff is fast
and reliable, and (2) popular version control systems such as
CVS [2] or Subversion [1] already store changes as line-level
differences. For example, a clone genealogy extractor tracks
code snippets by their file name and line number [29]. As
another example, fix-inducing code snippets [43] are inferred
by tracking backward a tuple of (file name:: function name::
line number) from the moment that a bug is fixed.

4.3 Syntax Tree Matching
For software version merging, Yang [47] developed an AST

differencing algorithm. Given a pair of two functions (fT , fR),
the algorithm creates two abstract syntax trees T and R
and attempts to match the two tree roots. If the two roots
match, the algorithm aligns T ’s subtrees t1, t2, ..., ti and R’s
subtrees r1, r2, ...rj using the LCS algorithm and matches
subtrees recursively. This type of tree matching respects the
parent-child relationship as well as the order between sibling
nodes, but is very sensitive to changes in nested block and
control structures because tree roots must be matched for
every level.

59

Hunt and Tichy do not directly compare ASTs but use
syntactic information to guide string level differencing. Their
3-way merging tool [24] parses a program into a language
neutral form, compares token strings using the LCS algo-
rithm, and finds syntactic changes using structural informa-
tion from the parse.

For dynamic software updating, Neamtiu et al. [38] built
an algorithm that tracks simple changes to variables, types,
and functions based on a AST representation. Neamtiu’s
algorithm assumes that function names are relatively sta-
ble over time and matches the ASTs of functions with the
same name; the algorithm traverses two ASTs in parallel
and incrementally adds one-to-one mappings as long as the
ASTs have the same shape. In contrast to Yang’s algorithm,
Neamtiu’s algorithm cannot compare structurally different
ASTs.

4.4 Control Flow Graph Matching
Laski and Szermer [33] first developed an algorithm that

computes one-to-one correspondences between CFG nodes
in two programs P1 and P2. This algorithm first reduces a
CFG to a series of single-entry, single-exit subgraphs called
hammocks and matches a sequence of hammock nodes us-
ing a depth first search (DFS). Once a pair of corresponding
hammock nodes is found, the hammock nodes are recur-
sively expanded in order to find correspondences within the
matched hammocks.

Jdiff [5] extends Laski and Szermer’s (LS) algorithm to
compare Java programs based on an enhanced control flow
graph (ECFG). Jdiff is similar to the LS algorithm in the
sense that hammocks are recursively expanded and com-
pared, but is different in three ways: First, while the LS
algorithm compares hammock nodes by the name of a start
node in the hammock, Jdiff checks whether the ratio of
unchanged-matched pairs in the hammock is greater than
a chosen threshold in order to allow for flexible matches.
Second, while the LS algorithm uses DFS to match ham-
mock nodes, Jdiff only uses DFS up to a certain look-ahead
depth to improve its performance. Third, while the LS algo-
rithm requires hammock node matches at the same nested
level, Jdiff can match hammock nodes at a different nested
level; thus, Jdiff is more robust to addition of while loops
or if-statements at the beginning of a code segment. Jdiff
has been used for regression test selection [40] and dynamic
impact analysis [6].

4.5 Program Dependence Graph Matching
There are several program differencing algorithms based

on a program dependence graph [23, 12, 26]. These algo-
rithms are not applicable to popular modern program lan-
guages because they can run only on a limited subset of
C languages without global variables, pointers, arrays, or
procedures.

4.6 Binary Code Matching
BMAT [46] is a fast and effective tool that matches two

versions of a binary program without knowledge of source
code changes. BMAT was used for profile propagation and
regression test prioritization [44]. BMAT’s algorithm matches
blocks in three steps. The first step of BMAT’s matching
algorithm is to find one-to-one mappings between the pro-
cedures in two versions based on their names, type informa-
tion, and code contents. To match procedures with different

names, block trial matching is done on procedure pairs with
a small number of character differences in their hierarchical
names. In this step, the thresholds for procedure name dif-
ference and block matching percentage are both set heuris-
tically. In the second step, BMAT first matches data blocks
within each pair of matched procedures using a hash func-
tion and matches remaining unmatched data blocks if the
unmatched blocks are sandwiched by already matched pairs.
In the third step, BMAT matches code blocks in multiple
hashing passes. During hash-based matching, if hash values
collide, two heuristics are used to break ties: (1) crossing
matches are forbidden at certain hashing passes, and (2) a
pair of blocks is preferred to other tied pairs if either its
predecessors or successors are also matched. For remaining
unmatched blocks, BMAT matches blocks based on control
flow equivalence, allowing one-to-many mappings between
old code blocks and new code blocks.

4.7 Clone Detection
A clone detector is simply an implementation of an arbi-

trary equivalence function. The equivalence function defined
by each clone detector depends a program representation
and a comparison algorithm. Most clone detectors [8, 28,
9, 32, 27] are heavily dependent on (1) hash functions to
improve performance, (2) parameterization to allow flexible
matches, and (3) thresholds to remove spurious matches. A
clone detector can be considered as a many-to-many matcher
based solely on content similarity heuristics.

4.8 Origin Analysis Tools
Origin analysis infers refactoring events such as splitting,

merging, renaming and moving by comparing two versions
of a program [14, 52, 31, 4, 18, 35, 19]. Origin analysis
tackles the program element matching problem directly but
produces matching results only at a predefined granularity
such as a procedure, class or file.

Demeyer et al. [14] first proposed the idea of inferring
refactoring events by comparing the two programs. De-
meyer et al. used a set of ten characteristics metrics for
each class, such as LOC and the number of method calls
within a method (i.e., fan-out) and inferred where refactor-
ing events occurred based on the metric values and a class
inheritance hierarchy.

Zou and Godfrey’s origin analysis [52] matches procedures
using multiple criteria (names, signatures, metric values,
and a set of callers and callees) and infers merging, split-
ting, and renaming events. Both Demeyer et al. and Zou
and Godfrey’s analyses are semi-automatic in the sense that
a programmer must manually tune matching criteria and
select a match among candidate matches.

Kim et al. [30] automated Zou and Godfrey’s procedure
renaming analysis. In addition to matching criteria used
by Zou and Godfrey, Kim et al. used clone detectors such
as CCFinder [28] and Moss [3] to calculate content simi-
larity between procedures. An overall similarity is com-
puted as a weighted sum of each similarity metric, and a
match is selected if the overall similarity is greater than a
certain threshold. To create an evaluation data set, ten hu-
man judges identified renaming events in the Subversion and
the Apache projects, and if seven out of ten judges agreed
the origin of a renamed procedure, a match was added to
a reference data set. Using the reference data set, Kim et
al. optimized each factor’s weight and tuned the threshold

60

Table 1: Comparison of Matching Techniques
Program Citation Granularity Assumed Multiplicity Heuristics Application

Representation Correspondence N P S
A set of [20, 15, 37] Module 1:1

√
Fault proneness

entities Bevan et al. [11] File 1:1
√

Instability
Ying et al. [48] File 1:1

√
Co-change

Zimmermann et al. File 1:1
√

[51] Procedure
Field

String diff [25] Line File 1:1
√

Merging
Clone genealogy [29]

Fix inducing code [43]
bdiff [45] Line File 1:n

√
Merging

AST cdiff [47] AST Node Procedure 1:1
√

Neamtiu et al.[38] Type, Var 1:1
√ √

Type change
Hunt, Tichy[24, 35] Token File 1:1

√ √
Merging

CFG Jdiff [5] CFG node 1:1
√ √

Regression testing
Impact analysis

Binary BMAT [46] Code block 1:1 (procedure)
√ √ √

Profile propagation
n:1 (block) Regression testing

Hybrid Zou, Godfrey [52] Procedure 1:1 or 1:n or n:1
√ √

Origin analysis
Kim et al. [30] Procedure 1:1

√ √
Signature change [31]
Renaming analysis

N: Name-based heuristics, P: Position-based heuristics, S: Similarity-based heuristics

value. The accuracy of Kim’s tool was better than the aver-
age accuracy of human judges, indicating that human judges
significantly disagreed about the origin of procedures.

5. COMPARISON
Table 1 shows comparison of the state-of-the-art matching

techniques in Section 4. As shown in the fourth column of
Table 1, many matching techniques assume correspondence
at a certain granularity no matter whether this assumption
is explicitly stated or not. For example, using diff to match
code snippets assumes that input files already are matched.
As another example, using cdiff to match AST nodes as-
sumes that enclosing functions are matched by the same
name.

All matching techniques heavily rely on heuristics to re-
duce a matching scope and to improve precision and recall.
The heuristics are categorized into three categories: 2

1. Name-based heuristics match entities with similar names.
For example, BMAT and Jdiff match procedures in
multiple phases by the same globally qualified name
(e.g., System.out.println), by the same hierarchical name,
by the same signature, and by the same name.

2. Position-based heuristics match entities with similar
positions. If entities are placed in the same syntac-
tic position or surrounded by already matched pairs
(i.e., a sandwich heuristic), they become a matched
pair. For example, BMAT uses a sandwich heuristic
aggressively to remove unmatched pairs. As another
example, Neamtiu’s algorithm traverses two ASTs in
parallel and matches variables placed in the same syn-
tactic position regardless of their labels.

3. Similarity-based heuristics match entities that are nearly
identical; they often rely on parameterization and a
hash function to find near identical entities. All clone
detectors can be viewed as a similarity-based matcher.

2The three categories are not comprehensive or mutually
exclusive.

The three different types of heuristics complement one an-
other. For example, when hash values collide or parameteri-
zation results in spurious matches, position-based heuristics
will select a matched pair that preserves linear ordering or
structural ordering by checking neighboring matches. Table
1 (column 6 to 8) summarizes which kinds of heuristics that
each matching technique uses.

6. EVALUATION
Matching techniques are often inadequately evaluated—Only

Kim et al. conducted a comparative study using human sub-
jects [30]. This lack of evaluation is exacerbated by the fact
that there are no agreed evaluation criteria or representa-
tive benchmarks. Finding such universal criteria would be
difficult since each technique is built for a different goal. For
example, matching techniques for regression testing or pro-
file propagation [5, 46, 49] can be evaluated by the accuracy
of static branch prediction and code coverage; but even this
evaluation method is not applicable to programs without
test suites. To evaluate matching techniques uniformly, we
take a scenario-based evaluation approach; we design a small
set of hypothetical program change scenarios, on which we
describe how well various matching techniques will perform.
3

Scenario 1: (1) a programmer inserts if-else statements
in the beginning of the method mA, and (2) the program-
mer reorders several statements in the method mB without
changing semantics as shown in Table 2.

The ideal matching technique should produce (s1-s1’), (s2-
s2’), (s3-s4’), (s4-s3’), and (s5-s5’) and identify that s0’ is
added. The third column of Table 3 summarizes how well
each technique will work in this scenario. Diff can match
lines of mA but cannot match reordered lines in mB because
the LCS algorithm does not allow crossing block moves. On
the other hand, bdiff can match reordered lines in mB be-
cause crossing block moves are allowed. Neamtiu’s algo-

3PDG-based matching techniques are excluded due to lack
of modern programming language support.

61

Table 2: Scenario 1 Code Change
before after

mA (){
if (pred_a) { \\s1
foo() \\s2

}
}
mB (b){

a:= 1 \\s3
b:= b+1 \\s4
fun(a,b) \\s5

}

mA (){
if (pred_a0) { \\s0’

if (pred_a) { \\s1’
foo() \\s2’

}
}

}
mB (b){
b:= b+1 \\s3’
a:= 1 \\s4’
fun(a,b) \\s5’

}

rithm will perform poorly in both mA and mB because it
does not perform a deep structural match. Cdiff cannot
match unchanged parts in mA correctly because cdiff stops
early if roots do not match for each level. Jdiff will be
able to skip the changed control structure, map unchanged
parts in mA, and match reordered statements in mB if the
look-ahead threshold is greater than the depth of nested
controls. BMAT cannot track code blocks in mB because
BMAT’s hashing algorithms are instruction order sensitive.
In conclusion, Jdiff will work the best for changes within
procedures at a statement or predicate level.

Scenario 2: A file PElmtMatch changed its name to PMatch-
ing. A procedure matchBlck are split into two procedures
matchDBlck and matchCBlck. A procedure matchAST
changed its name to matchAbstractSyntaxTree.

The ideal matching technique should produce (PElmt-
Match, PMatching), (matchBlck, matchDBlck), (matchBlck,
matchCBlck), and (matchAST, matchAbstractSyntaxTree).
The fourth column of Table 3 summarizes how each tech-
nique will work in this scenario. Most name-based match-
ing techniques will do poorly due to renaming events. Diff
and bdiff will be able to track each line only if file names
did not change. Both cdiff and Neamtiu’s algorithm will
perform poorly if procedure names changed. Both BMAT
and origin analysis tools will perform well because they rely
on multiple passes of hash functions and multiple phases of
name matching.

The remaining columns of Table 3 describe how well each
matching technique will work in case of restructuring tasks
at a procedure level or at a file level.

Based on Table 1 and 3, we conclude the following:

• Matching techniques based on AST or CFG produce
matches at fine-grained levels but are only applicable
to a complete and parsable program. Researchers must
consider the trade-off between matching granularity,
matching requirements, and matching cost.

• Many techniques employ the LCS algorithm even when
matching AST or CFG, thus inheriting the assump-
tions of LCS: one-to-one correspondences between
matched entities and linear ordering among matched
pairs. This sort of implicit assumptions must be care-
fully examined before implementing a matcher.

• Most techniques support only one-to-one mappings at
a fixed granularity. Therefore, they will perform poorly
when merging or splitting occurs.

• The more heuristics are used, the more matches can
be found by complementing one another. For exam-
ple, name-based matching is easy to implement and
can reduce matching scope quickly, but it is not ro-
bust to renaming events. In this case, similarity-based
matching can produce matches between renamed enti-
ties and position-based matching can leverage already
matched pairs to infer more matches.

7. FUTURE DIRECTIONS
This section lists remaining open problems and future di-

rections.
Hybrid Matcher. Although no single technique per-

forms perfectly in all change scenarios but the combination
of all techniques does. Thus combining multiple techniques
may improve the accuracy of matches by complementing one
another. The simplest way is to run all matching techniques
separately and find consensus among the results. Another
way of building a hybrid matcher is to leverage a feedback
loop between matching tools and tools that infer refactoring
events. Determining which refactoring occurred and deter-
mining correspondences is a chicken and egg problem; in-
ferring refactoring events requires knowledge of correspon-
dences, and finding good correspondences is achieved by
knowing which refactoring occurred. This feedback cycle
provides an opportunity to find more matches. The results
of inferred transformations are fed to matching tools, and
the matching results are fed back to a refactoring recon-
struction tool iteratively until optimal correspondences are
found.

We must note that combining results from multiple match-
ers will require tremendous efforts because (1) not every
matching tool is available for public use or applicable to
popular programming languages and (2) different matchers
use different program representations.

Capturing Editing Operations. Having a complete
history of logical editing operations would nullify the match-
ing problem. However, most software repositories employ
state-based merging not operation-based merging [34], thus
making it impossible to restore logical editing operations
completely. Even when an edit log is available, if editing
operations are captured at a key stroke level, it is not trivial
to reconstruct logical editing operations (such as procedure
renaming, splitting, and merging) and produce matches be-
tween program elements. Recently, capturing and replaying
refactoring operations is shown to be possible in an Eclipse
IDE [22], so we can leverage this type of refactoring history
to initiate the feedback loop discussed above.

Interval Manipulation vs. Matching Tool Selec-
tion. In this paper, we simplified a multi-version program
matching problem as a two version matching problem. To
use a matching technique in the context of multi-version
analyses, the interval between each pair of versions must
be determined. In the past, the granularity of available
historical data limited a sampling interval for multi-version
analyses. Recently, several infrastructures [10, 51, 50] were
built to facilitate multi-version analyses by restoring commit
transactions from a source code repository and automati-
cally extracting multiple versions separated by an arbitrary
time interval. These infrastructures enable multi-version
analyses to manipulate a sampling interval. Therefore, the
remaining problem is to determine an optimal sampling in-
terval for each matching technique (or select an appropriate

62

Table 3: Evaluation of the Surveyed Matching Techniques
Program Citation Scenario Transformations Strength and Weakness

Representation Split/Merge Rename
1 2 Proc File Proc File

String diff [25] � � � � � � − sensitive to file name changes
bdiff [45] � � � � � � + can trace copied blocks

AST cdiff [47] � � � � � � − sensitive to nested level change
− require procedure level mappings

Neamtiu et al. [38] � � � � � � − partial AST matching
Hunt, Tichy [24, 35] � � � � � � − require file level mappings

+ can identify procedure renaming
CFG JDiff [5] � � � � � � + robust to signature changes

− sensitive to control structure changes
Binary BMAT [46] � � � � � � + robust to procedure renaming

− assume 1:1 procedure correspondence
− only applicable to binary programs

Hybrid Zou, Godfrey [52] � � � � � � − semi-automatic, manual analysis
Kim et al. [30] � � � � � � − assume 1:1 procedure correspondence

� good � mediocre � poor

matching tool depending on the logical gap between two
versions of a program). Another interesting open question
is, ”can we design a matching technique that works as well
as aggregating results from a set of program snapshots that
separated by only small changes?”

Matching Result Aggregation. As matching com-
plexity increases by supporting multiple granularities and
many-to-many mappings, representing match results becomes
a non-trivial problem. In addition, when a two-version match-
ing tool is used for multi-version program analyses, aggre-
gating individual matching results and representing the final
results in a compact form remains as an open problem.

Leveraging Dynamic Information. Most matching
techniques are based on syntactic similarities at a source
code level. In comparison checking research [49, 39], dy-
namic information has been used to match an optimized ver-
sion and an unoptimized version of the same program when
the two versions were executed on the same input. Abstrac-
tion of multiple execution traces may guide matching of a
static program representation. For example, comparing dy-
namic invariants [16] may be useful for identifying variable
level matches at the entry (or exit) of a function.

8. CONCLUSION
In this paper, we defined the program element matching

problem and argued its importance for fine-grained multi-
version analyses. We presented a survey of matching tech-
niques from various research areas and evaluated them based
on hypothetical program change scenarios by hand. We be-
lieve that our assessment of existing techniques will guide
researchers to choose an appropriate matching technique for
their analysis.

In conclusion, every matching technique is an implemen-
tation of some pseudo equivalence function, and the more
heuristics are used, the better the matching technique will
work. One direction of future work involves building a hy-
brid matcher that leverages a feedback loop between match-
ing tools and tools that infer refactoring events. Another
future direction is to customize existing matchers in the con-
text of a specific type of multi-version analysis and build
an evaluation data set for that analysis. In addition, de-

termining an optimal sampling interval for each matching
technique remains as an open problem.

Our longer-term objectives are to (1) define the problem
more precisely, allowing for better assessment and sharing
of the approaches and (2) lay a foundation for more effec-
tive solutions applicable to specific kinds of multi-version
analyses.

9. ACKNOWLEDGMENTS
We thank Dagstuhl 05261 seminar participants for fruitful

discussions. We also thank Michael Toomim for reading our
draft and Vibha Sazawal, Dan Grossman, and Rob DeLine
for discussions that helped us refine our ideas.

10. REFERENCES
[1] subversion.tigris.org.

[2] www.cvshome.org.

[3] A. Aiken. A system for detecting software plagiarism.

[4] G. Antoniol, M. D. Penta, and E. Merlo. An
automatic approach to identify class evolution
discontinuities. In IWPSE, pages 31–40, 2004.

[5] T. Apiwattanapong, A. Orso, and M. J. Harrold. A
differencing algorithm for object-oriented programs. In
ASE, pages 2–13. IEEE Computer Society, 2004.

[6] T. Apiwattanapong, A. Orso, and M. J. Harrold.
Efficient and precise dynamic impact analysis using
execute-after sequences. In ICSE, pages 432–441, 2005.

[7] A. Apostolico and Z. Galil, editors. Pattern matching
algorithms. Oxford University Press, UK, 1997.

[8] B. S. Baker. A program for identifying duplicated
code. Computing Science and Statistics, 24:49–57,
1992.

[9] I. D. Baxter, A. Yahin, L. M. de Moura,
M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In ICSM, pages 368–377, 1998.

[10] J. Bevan, J. E. James Whitehead, S. Kim, and
M. Godfrey. Facilitating software evolution research
with Kenyon. In ESEC/FSE, pages 177–186, 2005.

[11] J. Bevan and E. J. W. Jr. Identification of software
instabilities. In WCRE, pages 134–145, 2003.

63

[12] D. Binkley, S. Horwitz, and T. Reps. Program
integration for languages with procedure calls. ACM
TOSEM, 4(1):3–35, 1995.

[13] J. R. Cordy. Comprehending reality: Practical barriers
to industrial adoption of software maintenance
automation. In IWPC ’03, page 196, 2003.

[14] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding
refactorings via change metrics. In OOPSLA ’00,
pages 166–177, 2000.

[15] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron,
and A. Mockus. Does code decay? Assessing the
evidence from change management data. IEEE Trans.
Softw. Eng., 27(1):1–12, 2001.

[16] M. D. Ernst. Dynamically Discovering Likely Program
Invariants. Ph.D. Disseratation, University of
Washington, Seattle, Washington, Aug. 2000.

[17] H. Gall, K. Hajek, and M. Jazayeri. Detection of
logical coupling based on product release history. In
ICSM, pages 190–197, 1998.

[18] C. Görg and P. Weißgerber. Error detection by
refactoring reconstruction. In MSR ’05, pages 29–35.

[19] C. Görg and P. Weißgerber. Detecting and visualizing
refactorings from software archives. In IWPC, pages
205–214, 2005.

[20] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy.
Predicting fault incidence using software change
history. IEEE Trans. Softw. Eng., 26(7):653–661, 2000.

[21] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for Java software. In
OOPSLA ’01, pages 312–326, 2001.

[22] J. Henkel and A. Diwan. Catchup!: capturing and
replaying refactorings to support API evolution. In
ICSE ’05, pages 274–283, 2005.

[23] S. Horwitz. Identifying the semantic and textual
differences between two versions of a program. In
PLDI’90, volume 25, pages 234–245, June 1990.

[24] J. J. Hunt and W. F. Tichy. Extensible language-aware
merging. In ICSM, pages 511–520, 2002.

[25] J. W. Hunt and T. G. Szymanski. A fast algorithm for
computing longest common subsequences. Commun.
ACM, 20(5):350–353, 1977.

[26] D. Jackson and D. A. Ladd. Semantic Diff: A tool for
summarizing the effects of modifications. In ICSM ’94,
pages 243–252, 1994.

[27] J. H. Johnson. Identifying redundancy in source code
using fingerprints. In CASCON, pages 171–183. IBM
Press, 1993.

[28] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans. Softw.
Eng., 28(7):654–670, 2002.

[29] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy.
An empirical study of code clone genealogies. In
ESEC/SIGSOFT FSE, pages 187–196, 2005.

[30] S. Kim, K. Pan, and J. E. James Whitehead. When
functions change their names: Automatic detection of
origin relationships. In WCRE, 2005.

[31] S. Kim, E. J. Whitehead, and J. Bevan. Analysis of
signature change patterns. In MSR ’05, pages 64–68.

[32] R. Komondoor and S. Horwitz. Using slicing to

identify duplication in source code. In SAS, pages
40–56, 2001.

[33] J. Laski and W. Szermer. Identification of program
modifications and its applications in software
maintenance. In ICSM, 1992.

[34] E. Lippe and N. van Oosterom. Operation-based
merging. In SDE’92, pages 78–87, 1992.

[35] G. Malpohl, J. J. Hunt, and W. F. Tichy. Renaming
detection. Autom. Softw. Eng., 10(2):183–202, 2000.

[36] T. Mens. A state-of-the-art survey on software
merging. IEEE Trans. Softw. Eng., 28(5):449–462,
2002.

[37] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In ICSE,
pages 284–292, 2005.

[38] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding
source code evolution using abstract syntax tree
matching. In MSR’05, pages 2–6.

[39] G. C. Necula. Translation validation for an optimizing
compiler. In PLDI ’00, pages 83–94, 2000.

[40] A. Orso, N. Shi, and M. J. Harrold. Scaling regression
testing to large software systems. In SIGSOFT
’04/FSE-12, pages 241–251, 2004.

[41] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058, 1972.

[42] G. Rothermel and M. J. Harrold. A safe, efficient
regression test selection technique. ACM TOSEM,
6(2):173–210, 1997.

[43] J. Sliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In MSR ’05, pages 24–28, 2005.

[44] A. Srivastava and J. Thiagarajan. Effectively
prioritizing tests in development environment. In
ISSTA ’02, pages 97–106, 2002.

[45] W. F. Tichy. The string-to-string correction problem
with block moves. ACM Trans. Comput. Syst.,
2(4):309–321, 1984.

[46] Z. Wang, K. Pierce, and S. McFarling. BMAT - a
binary matching tool for stale profile propagation. J.
Instruction-Level Parallelism, 2, 2000.

[47] W. Yang. Identifying syntactic differences between
two programs. Software - Practice and Experience,
21(7):739–755, 1991.

[48] A. T. T. Ying, G. C. Murphy, R. Ng, and
M. Chu-Carroll. Predicting source code changes by
mining change history. IEEE Trans. Softw. Eng.,
30(9):574–586, 2004.

[49] X. Zhang and R. Gupta. Matching execution histories
of program versions. In ESEC/SIGSOFT FSE, pages
197–206, 2005.

[50] T. Zimmermann and P. Weißgerber. Preprocessing
CVS data for fine-grained analysis. In MSR’04, pages
2–6.

[51] T. Zimmermann, P. Weißgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. IEEE Trans. Softw. Eng., 31(6):429–445,
2005.

[52] L. Zou and M. W. Godfrey. Using origin analysis to
detect merging and splitting of source code entities.
IEEE Trans. Softw. Eng., 31(2):166–181, 2005.

64

Detecting Similar Java Classes Using Tree Algorithms

Tobias Sager, Abraham Bernstein, Martin Pinzger, Christoph Kiefer
Department of Informatics

University of Zurich, Switzerland

tsager@gmx.ch {bernstein,pinzger,kiefer}@ifi.unizh.ch

ABSTRACT
Similarity analysis of source code is helpful during devel-
opment to provide, for instance, better support for code
reuse. Consider a development environment that analyzes
code while typing and that suggests similar code examples
or existing implementations from a source code repository.
Mining software repositories by means of similarity mea-
sures enables and enforces reusing existing code and reduces
the developing effort needed by creating a shared knowledge
base of code fragments. In information retrieval similarity
measures are often used to find documents similar to a given
query document. This paper extends this idea to source
code repositories. It introduces our approach to detect sim-
ilar Java classes in software projects using tree similarity
algorithms. We show how our approach allows to find sim-
ilar Java classes based on an evaluation of three tree-based
similarity measures in the context of five user-defined test
cases as well as a preliminary software evolution analysis
of a medium-sized Java project. Initial results of our tech-
nique indicate that it (1) is indeed useful to identify similar
Java classes, (2) successfully identifies the ex ante and ex
post versions of refactored classes, and (3) provides some
interesting insights into within-version and between-version
dependencies of classes within a Java project.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; E.1 [Data Struc-
tures]: Trees; H.3.3 [Information Storage and Retriev-
al]: Information Search and Retrieval—retrieval models

General Terms
Algorithms, Measurement, Experimentation

Keywords
Tree Similarity Measures, Software Repositories, Change
Analysis, Software Evolution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

1. INTRODUCTION
Similarity analysis of source code is helpful during de-

velopment to provide, for instance, better support for code
reuse, faster prototyping, and clone detection. Consider a
development environment that analyzes code while typing
and that suggests similar code examples or existing imple-
mentations from a source code repository. Mining software
repositories by means of similarity measures enables, for in-
stance, code reuse and reduces the development effort (and
thus cost) by making the shared knowledge base of code
fragments in the repository better accessible. As another
software evolution-based scenario, consider software project
analysis: the detection of similar entities (Java classes in
our case) in a complete project can indicate a deficit in the
architecture or implementation flaws. Removing or merging
similar classes may increase the overall quality as well as
maintainability of a software project.

The goal of this paper is to present an approach to de-
tect similar Java classes based upon their abstract syntax
tree (AST) representations. These trees are generated using
Eclipse’s [10] JDT API in which all statements and oper-
ations of Java source code are represented. The generated
complete ASTs are converted into an intermediary model
called FAMIX (FAMOOS Information Exchange Model) [13,
14]. FAMIX is a programming language-independent model
for representing object-oriented source code. The similarity
between two classes is computed by tree comparison algo-
rithms comparing the FAMIX tree representations of the two
classes. We implemented this process as an Eclipse plug-in
called Coogle (short for Code GoogleTM). Our initial results
show that Coogle is indeed useful to find similar Java classes
within a Java software project.

The rest of this paper is structured as follows: next, we
introduce our current implementation including the prepro-
cessing in Eclipse and the three implemented tree compari-
son algorithms: bottom-up maximum common subtree iso-
morphism, top-down maximum common subtree isomorphism,
and the tree edit distance. We then evaluate the effective-
ness of these algorithms in the context of five constructed
test-cases and a real-world Java project (Section 3), which
leads to a discussion of our technique in Section 4. Section 5
reflects on our approach in the light of related work. Finally,
we close with our conclusions in Section 6.

2. OUR APPROACH: COOGLE
We implemented a first prototype as an Eclipse plug-in

[10] called Coogle that stands for Code GoogleTM . Coogle
essentially implements the following two steps to determine

65

Figure 1: The figure shows the preprocessing steps
of Java source code into FAMIX trees which are used
as inputs for the similarity measures.

similarity between two or more Java classes: first, it trans-
forms the abstract syntax tree representations of the classes’
source code into intermediary FAMIX tree representations,
and second, the similarity between these trees is computed
based on tree similarity algorithms. The remainder of this
section explains both steps in detail.

2.1 Tree Generation
Every piece of code can be represented as an abstract syn-

tax tree (AST). An original, complete AST gets transformed
into an abridged FAMIX tree representation using Eclipse’s
ASTParser and our AST2FAMIX converter as illustrated
in Figure 1. We succinctly explain both of those tools.

The ASTParser is a component of the Eclipse JDT API
that processes Java source code into its abstract syntax tree
representation.1 The classes that make up the tree are speci-
fied in the package org.eclipse.jdt.core.dom. By default,
the ASTParser returns complete ASTs out of which the code
can be perfectly reconstructed.

Our AST2FAMIX parser traverses the abstract syntax
tree as generated by the ASTParser and builds a FAMIX
representation from the nodes of the tree. Figure 2 shows
a sample Java source code fragment and its corresponding
FAMIX tree representation. The elements from the ab-
stract syntax tree are mapped to FAMIX elements accord-
ing to Table 1. Note that FAMIX does not represent all
elements of Java abstract syntax trees, but instead repre-
sents a language-independent reduction of complete ASTs.
This results in an information loss when converting Java
to FAMIX since the level of granularity is reduced in the
FAMIX model. However, the benefit from using FAMIX is
the ability to perform programming language-independent
similarity analyses, i.e., to compare, for instance, classes in
C++ or Smalltalk with classes in Java. After the tree gen-
eration phase, the resulting FAMIX trees are passed to the
similarity measures, which we discuss in the next subsection.

2.2 Tree Similarity Analysis
The current implementation of Coogle is able to detect

structural similarity, i.e., similarity between the structure
of the FAMIX trees of the source code. When represent-
ing source code as trees one important question arises: Is
the order of the trees important? A Java compiler, for ex-
ample, does not necessarily consider the order of top-level
class body entities, such as methods or field declarations,

1http://www.eclipse.org/jdt/

Figure 2: Original Java class source code and its
corresponding FAMIX tree representation.

AST Node FAMIX Element

- FAMIXInstance
- Model
PackageDeclaration Package
TypeDeclaration Class
- InheritanceDefinition
FieldDeclaration Attribute
MethodDeclaration Method
SingleVariableDeclaration FormalParameter
SingleVariableDeclaration LocalVariable
ConstructorInvocation,
SuperConstructorInvocation,
ClassInstanceCreation,
MethodInvocation,
SuperMethodInvocation

Invocation

FieldAccess,
SuperFieldAccess,
SimpleName,
QualifiedName

Access

Table 1: Eclipse AST elements with the correspond-
ing FAMIX elements.

as relevant, whereas instructions in the bodies of these enti-
ties depend on the order of appearance in the source code.
Hence, we need an algorithm that disregards the order be-
tween top-level entities but takes the order of low-level en-
tities, such as method bodies, into consideration. As the
FAMIX model does not represent all instructions which can
occur in the body of an entity, e.g., it does not represent
control structures, we would prefer using algorithms that
perform a matching of unordered trees. Unfortunately, not
all of the similarity measure algorithms that we have chosen
have efficient solutions for unordered trees. For example, an
unordered solution for the tree edit distance (see 2.2.1) is
NP-complete as shown in [18]. We, therefore, implemented
unordered tree matching for the bottom-up maximum com-
mon subtree search only and otherwise use algorithms for
ordered trees.

2.2.1 Tree Similarity Algorithms
The literature on tree searching/editing is very elabo-

rate. Shasha et al., for instance, describes his work on gen-
eral tree and graph searching using exact and approximate
search algorithms in [12]. Wang et al. presents a tool called
TreeRank that does a nearest neighbor search for detect-
ing similar patterns in a given phylogenetic tree [17]. These
algorithms are highly specialized/optimized and, therefore,
complex. Valiente [16], in contrast, discusses a number of
standard tree searching and editing algorithms in detail pro-
viding efficient code implementation examples. To ensure a

66

Figure 3: Bottom-up maximum common subtree
isomorphism for two ordered trees (adapted from
Fig. 4.15 in [16], page 225).

quick prototyping approach we decided to first implement
three different algorithms from Valiente’s work for measur-
ing tree similarity: bottom-up maximum common subtree
isomorphism, top-down maximum common subtree isomor-
phism, and tree edit distance.

Bottom-up Maximum Common Subtree Isomorphism.
The goal of this algorithm is to find the largest isomorphic
subtree of two given trees T1 = (V1, E1) and T2 = (V2, E2).
Valiente reduces this problem to the problem of partition-
ing the nodes V1 ∪ V2 into equivalence classes. If two nodes
v and w belong to the same equivalence class, the bottom-
up subtree of T1 rooted at node v ∈ V1 is isomorphic to
the bottom-up subtree of T2 rooted at node w ∈ V2. The
equivalence classes of two ordered trees are illustrated by
the numbers in the nodes in Figure 3, where the bottom-
up maximum common subtree for the trees is highlighted in
gray. We determine the isomorphism code of a given node by
recursively building an isomorphism string consisting of the
isomorphism codes of all children of the node. This string
gets then compared to a collection of existing isomorphism
strings. If the string is already in the collection, the cor-
responding equivalence class is read from the collection. If
the isomorphism string is not contained in the collection, we
add it to the collection and assign a new equivalence class
code to the string. After collecting the equivalence classes of
both trees T1 and T2, the algorithm searches for the biggest
equivalence class by using a queue with the size of the nodes
as priority. The first element in the queue is the node with
the biggest size. This ensures that the matched subtree is
indeed a maximum common subtree.

Valiente describes this algorithm for unlabeled trees only.
We extended the algorithm to use labeled trees by assigning
a unique integer value to each FAMIX node type (Pack-
age, Class, Method, etc.). The equivalence classes are then
matched based on this value and the already defined equiv-
alence class code. This solution is also suggested in [15].
We implemented the comparator pattern [3] for this label
comparison.

To use this algorithm for unordered trees as well, the iso-
morphism codes of the children of a processed node are
sorted based on their assigned FAMIX node type before
searching for already existing code sequences in the equiva-
lence class collection. This ensures that all children of a node
only differing in order are treated the same, thus unordered.

Note that so far, we have only identified the maximum
common subtree of both of the input trees. In order to get
a similarity score between the two trees, we apply the follow-
ing procedure: the size (number of nodes) of the first input

tree T1 is denoted by |V1|. The cardinality |V2| stands for the
size of the tree T2 representing the second class. Further-
more, Tm denotes the maximum matched subtree of size
|Vm|. An efficient similarity measure needs to satisfy the
following properties: first, the more of T1 is matched, the
higher the similarity score of T1 and T2 is. This is expressed

by |Vm|
|V1| . This results in low values for complete matches

of T2, e.g., in the case if T2 is much smaller than T1. Sec-
ond, complete matches should get higher values than non-
complete ones, i.e., not the whole tree T2 can be matched
to T1. We experimented with different possibilities. Finally,
we decided to use a solution also described in [1] that results
in a similarity value between 0 and 1 (1 for identical trees
T1 and T2).

simMaxCommonSubtree(T1, T2) =
2 × |Vm|
|V1| + |V2| (1)

Having two trees T1 and T2 with |V1| and |V2| nodes,
where |V1| ≤ |V2|, the algorithm for ordered trees runs in
O(|V1| log |V2|) time using O(|V1| + |V2|) additional space
(see Theorem 4.56 in [16]). The algorithm for unordered
trees takes O((|V1|+ |V2|)2) time and also uses O(|V1|+ |V2|)
additional space (Theorem 4.60 in [16]).

Top-down Maximum Common Subtree Isomorphism.
An algorithm to find a top-down maximum common subtree
isomorphism for ordered and unordered trees is defined in
[16]. This algorithm finds the largest common subtree of
two given trees T1 and T2 under the prerequisite that the
root of the common subtree is identical (same node type)
with the root nodes of the compared trees. The differences
between the algorithm for ordered trees and the algorithm
for unordered trees are fundamental. For this paper, we
implemented the algorithm for ordered tree matching.

Starting from the root nodes of T1 and T2, the algorithm
recursively processes all children in preorder and compares
each pair of nodes for equality. If two nodes match, they are
added to a mapping M ⊆ V1×V2 that contains the complete
subtree after the recursion finishes. Note that the recursion
stops at nodes which do not match, i.e., the children of non-
matching nodes are not getting compared to each other.

The comparison of the nodes during the recursive pro-
cessing again allows for an extension of the algorithm to
labeled trees, returning a successful match only when the
labels (node types) match. Again, we used Equation 1 to
get a similarity score from the size of the maximum common
subtree and the two trees T1 and T2 under comparison.

This algorithm is very efficient with a running time of
O(|V1|) and O(|V1|) additional space for two ordered trees
T1 and T2, where |V1| ≤ |V2| (see Lemma 4.52 in [16]).

Tree Edit Distance. Calculating the tree edit distance is a
completely different approach for tree analysis than the max-
imum common subtree isomorphism algorithms. The tree
edit distance algorithm answers the question of how many
steps it takes to transform one tree into another tree by ap-
plying a set of elementary edit operations to the trees: in-
sertion, substitution, and deletion of nodes. For the ordered
trees T1 = (V1, E1) and T2 = (V2, E2) we denote a deletion of
a leaf node v ∈ V1 by v �→ λ or (v, λ). The substitution of a
node w ∈ V2 by a node v ∈ V1 is denoted by v �→ w or (v, w)
and an insertion of a node w ∈ V2 as a new leaf into T2 is de-

67

Figure 4: Transformation between two ordered trees
(adapted from Fig. 2.1 in [16], page 56).

noted by λ �→ w or (λ,w). Deletion and insertion operations
are performed on leaves only. When deleting a non-leaf node
v, every node in the subtree rooted at v has to be deleted
first. The same applies to the insertion of non-leaves. A
tree is transformed into another tree by using a sequence of
elementary edit operations as illustrated in Figure 4. Note
that in this figure, substitution of corresponding nodes is not
indicated. The complete transformation script is: [(v1, w1),
(v2, w2), (v3, λ), (v4, λ), (v5, w3), (λ, w4), (λ, w5), (λ, w6),
(λ, w7)]. Costs are assigned to all elementary edit opera-
tions. Our current implementation uses a cost function of
γ(v, w) = 1 if v = λ or w = λ and γ(v, w) = 0 other-
wise. The function reflects that node substitutions usually
denote relabelings which have little structural significance
and should, therefore, not be weighted. The edit distance
then is the least-cost transformation of T1 to T2 normalized
by the sum of nodes in T1 and T2. The lower the normalized
edit distance of two trees, the higher their similarity.

simTreeDistance(T1, T2) =
TreeDist(T1, T2)

|V1| + |V2| (2)

Finding the least-cost transformation of an ordered tree
T1 and T2 by determining shortest paths in an edit graph
runs in O(|V1||V2|) time using O(|V1||V2|) additional space
(see Lemma 2.20 in [16]).

3. EXPERIMENTAL EVALUATION
To evaluate the ability of our approach to detect similar

entities in a software project, we ran the evaluation on two
datasets. First, we constructed a set of special test cases
capturing frequently occurring changes which happen dur-
ing software development. Evaluating our similarity detec-
tion algorithms for these constructed changes, we were able
to analyze how specific changes affect structural similarity.
In a second experiment we chose a well known Java project
as the dataset for our implemented similarity measures. We
used Eclipse’s compare plug-in org.eclipse.compare2 and
measured the similarity of the classes within the same ver-
sion as well as between different versions of the plug-in. This
analysis focused on the efficiency of the measures for detect-
ing structural similarities between two classes in the former
and on software evolution considerations in the latter case.
The remainder of this section shows our obtained results of
this two experiments.

2http://dev.eclipse.org

Figure 5: Results with constructed test cases for
each similarity measure.

3.1 Experiment #1: Constructed Test Cases
As a basis for the construction of the test cases we took the

class AzureusCoreImpl from the Azureus project (except in
test case E).3 This class was chosen as it uses both “normal”
and static attributes and methods. Additionally, it defines
getter and setter methods for its attributes. In addition to
the test cases we compared AzureusCoreImpl with an empty
class to ensure the plausibility of our implemented measures.
The defined test cases are the following:

Test Case A: Add Constructor. This test case adds a new
constructor with a single this()-invocation as body to the
class.

Test Case B: Add Attribute. We add a new attribute with
its respective getter and setter methods to the class. The
rest of the class is left unchanged.

Test Case C: Add Invocation. We insert an invocation,
i.e., a method call into the body of an existing method.

Test Case D: Method Extraction. This case models the
movement of code statements from an existing method into
a new method. An invocation of the new method is added to
the original one. This change often happens during a code
refactoring to remove duplicated code or when pulling-up
code into parents [2].

Test Case E: Implement Interface. The interface pro-
gramming pattern is one of the most important design pat-
terns in object-oriented programming [3]. This test case
measures the similarity between classes implementing the
same interface. We expect this case to have very low struc-
tural similarity, as the structural similarities between classes
implementing the same interfaces are limited to the imple-
mentation of the methods defined in the interface, which
may be implemented in structurally completely dissimilar
ways.

3.1.1 Results of Test Cases
This section presents our findings, discusses major draw-

backs, and details the performance of the implemented al-
gorithms. The results of this experiment are shown in Fig-
ure 5. Confirming our expectations, none of the algorithms

3http://azureus.sourceforge.net

68

detected any significant similarity in Test Case E. A similar-
ity measure finding classes implementing the same interface
would have to put special emphasis on the interface defini-
tions, which none of our measures does.

Bottom-up Maximum Common Subtree Isomorphism.
The obtained results show clearly that the bottom-up sub-
tree isomorphism algorithm performs worst for detecting
similar Java classes. The similarity score remains at about
14%. The reason for this is that this measure uses equiv-
alence classes for checking equality of different nodes. For
a better match, the measure would have to include the un-
changed parts of the tree as well, requiring the equivalence
class of the root to remain the same. This is not the case in
our tests as a node insertion/deletion at tree depth level 1
changes the equivalence code of the root. Hence, the mea-
sure matches the biggest subtree from level 2, which usually
is the biggest method.

Top-down Maximum Common Subtree Isomorphism.
We obtain mixed results with this measure. Case C, D,
and partly case A show good scores for detecting similarity
with the top-down algorithm. In case B, similarity is not
well detected because the insertion of a variable stops the
matching process too early. Hence, this algorithm overval-
ues small changes near the root, such as simple insertions,
deletions, and relabelings. This limitation could possibly
be lessened by continuing the comparison even when nodes
have different names or by using a top-down algorithm for
unordered trees.

Tree Edit Distance. The tree edit distance algorithm per-
formed best for our test cases. The similarity scores in each
test (except E) are over 97%, which is sufficient for estab-
lishing a similarity relation between two classes with a high
accuracy. The big advantage of this algorithm in compari-
son to the two maximum common subtree algorithms is that
it is not as susceptible to node insertions/deletions.

3.2 Experiment #2: Java Project
The org.eclipse.compare-plug-in of Eclipse is used as

sample, real-world Java project to test the similarity mea-
sures. The analysis demonstrates the ability of using the
implemented similarity measures in a non-laboratory envi-
ronment and critically highlights shortcomings. “The plug-
in provides support for performing structural and textual
compare operations on arbitrary data” (from its Javadoc).
The goal of this experiment was to visualize the project’s
code evolution steps by comparing different versions of the
plug-in. I.e., how strongly is class similarity affected when
changes/refactorings occur to the code from one version to
the next. To achieve this goal, we have compiled a heatmap
illustrated in Figure 6 showing similarities between classes
of two different versions of the plug-in. For our experiment,
we used versions 3.0 and 3.1 of the compare-plug-in.

3.2.1 Results of org.eclipse.compare-Plug-in
Based on our findings of Experiment #1 (see Section 3.1),

we chose to perform a similarity analysis using the tree edit
distance measure to determine class similarity within the
org.eclipse.compare-plug-in. Consider the heatmap de-
picted in Figure 6: class similarity is computed between any
class of version 3.0 (on the x-axis) and 3.1 (on the y-axis).

Figure 6: Heatmap showing similarities between all
classes of versions 3.0 and 3.1 of the org.eclipse.

compare-plug-in. Black squares indicate similarity
above 90%, dark-gray above 75%, and light-gray
above 50%.

The similarity score between two classes is visualized as a
shaded square. Similarity above 90% is indicated by black
squares. Squares shaded in dark-gray denote class similarity
above 75%, whereas squares in light-gray indicate similarity
above 50%. Similarities below 50% are not shaded.

The elements on the diagonal indicate how strong the soft-
ware has changed between versions. I.e., the diagonal is
clearly visible as a dark “line” showing that the same classes
of two versions have very high similarity—more than 75% in
most cases. As shown in Figure 6, a few classes have changed
from version 3.0 to 3.1. As an example, we picked the
class MergeMessages from the package org.eclipse.com-

pare.internal.merge (indicated in Figure 6 by a circle on
the line marked with the arrow labeled with a “2”) that has
a similarity of 74% between the two versions. Examining the
source code of the two versions, we found that three more
static fields were added and one method was removed and
replaced with a static initializer in version 3.1. Hence, three
more attribute nodes and one method node with an invoca-
tion node are added to the tree representation in version 3.1
resulting in a similarity score of 74%.

The map of Figure 6 is not only useful to visualize soft-
ware evolution but also to measure and visualize similarity
between any two classes of a software project. Again, we ex-
plain this with an example: “The interface ICompareNavi-

gator is used to navigate through the individual differences
of a CompareEditorInput” (from its Javadoc). It is a simple
interface defining exactly one method with one argument.
Similarity between this interface and 25 other classes/in-
terfaces out of 114 is very high, i.e., above 75% (refer to
Figure 6 that shows an arrow labeled with a “1” point-
ing to the line corresponding to ICompareNavigator in this

69

heatmap). The entities with high similarity are, for instance,
INavigatable (sim=75%) also specifying one method with
one parameter but, in addition, defining a static field. Hence,
the corresponding tree representations of these interfaces are
very similar, which is correctly reflected by their high sim-
ilarity value. Another interface similar to ICompareNavi-

gator is IViewerDescription (sim=75%) also defining one
method but with 3 arguments instead of 1 as in the case of
ICompareNavigator. Note that Figure 6 shows the similar-
ities of classes in version 3.0 with those in 3.1. To compare
the similarity of classes within the same version, we double-
checked our findings in a heatmap comparing classes from
version 3.0 with all other classes from version 3.0 (omit-
ted due to space constraints). Naturally, all similarities
on the diagonal in this within-version analysis were 100%
equal since classes where compared with themselves. The
line comparing ICompareNavigator with the other classes
within the package showed a similar (but not the same) be-
havior as in the between-version analysis above.

4. DISCUSSION
In this section we discuss the results of our experiments,

highlight shortcomings of the tree similarity algorithms and
propose possible improvements for future work.

4.1 Comparison of Implemented Measures
Our obtained results showed that a bottom-up maximum

common subtree isomorphism match is not a good measure
for similarity when evaluated on the user-constructed test
cases. It is too susceptible to subtle code modifications in
methods, which usually cause changes at the bottom-level
of the tree.

The top-down maximum common subtree algorithm pro-
duces promising results on the test cases. The measure is
a good indicator for similarity as it is able to detect classes
with similar structures. One negative characteristic of this
algorithm is that simple changes at the top of the tree, such
as adding a new attribute or inserting an attribute between
existing methods, reduces the reliability of the measure. The
top-down approach is, however, not as sensitive to changes
at the bottom of the trees as the bottom-up approach.

The best-performing similarity algorithm turned out to be
the tree edit distance on both datasets. It detected the small
changes specified in the test cases and provided itself as a
good indicator for structural similarity when tested on the
compare-plug-in. Note that the price to pay for it is high: it
runs in quadratic time complexity O(|V |2) of its tree input
size, which resulted for the n × n-comparison of 114 classes
of the org.eclipse.compare-plug-in in more than an hour
to finish.

4.2 Limitations and Future Work

Field or Method Name Matching. Additional informa-
tion can be gained from class, field, or method names in
similarity comparisons. Methods and fields used for sim-
ilar tasks are (hopefully) named with similar names if the
code was created abiding reasonable naming standards. This
helps detecting cloned parts of classes. Text-based similarity
measures can then be used to calculate similarity between
names. The current implementation of Coogle treats nodes
representing class X and class Y, for instance, as equal
since only the types (“Class” in this case) of nodes are com-

pared. Note that because Coogle currently does not com-
pare names, also access control qualifiers, such as public,
protected, and private, are not taken into consideration
since those are not proper FAMIX entities, but simple string
attributes of entities.

FAMIX Limitations. The FAMIX model represents a fixed
set of elements (see Table 1), i.e., invocations, declarations,
attributes, etc., but does not include assignments, mathe-
matical operations, and control structures. This limits the
detection of small changes to basic, top-level instructions.
Different results are to be expected when bypassing FAMIX
and directly generating the comparisons from complete ab-
stract syntax trees or when extending the FAMIX model
with a more fine-grained hierarchical structure. This might
help to detect “real” functionally similar classes and dimin-
ish the detection of classes only structurally similar. On the
other hand, because the size of the input trees would be
much bigger, the algorithm’s performance would get worse.

Surrounding String Matching. We plan to include sur-
rounding text in similarity comparisons, as statements in
source code are frequently surrounded by free text, such as
Javadoc. Analyzing the similarity of this text and including
this textual similarity in the measures will probably further
boost the precision of the similarity algorithms.

Similarity Measure Combinations. We think it is useful
to investigate different combination approaches of structure-
based as well as text-based similarity measures to further
increase the precision of matches. We, therefore, postponed
the implementation and evaluation of such combinations to
the future.

5. RELATED WORK
Both Mishne & Rijke [7] and Neamtiu et al. [9] de-

fine a conceptual model for source code representation that
partially resembles the abstract syntax tree as defined by
Eclipse. Mishne & Rijke use code similarity for retrieving
similar code fragments from an existing repository of code
documents based on classifying instructions in the code with
varying weights. They do, however, not apply tree similarity
measures to retrieve similar code fragments from the repos-
itory. Neamtiu et al. extract similarity by mapping corre-
sponding AST elements of two code documents. Again, this
algorithm does not use a generic tree similarity algorithm.
Their focus lies on the mapping algorithms to measure sim-
ilarity between AST representations, which relies on node
names within the ASTs.

A different approach is introduced by Kontogiannis who
defines a Program Description Tree (PDT) that is generated
from code fragments [5]. These fragments are treated as be-
havioral entities, i.e, as independent components interact-
ing with resources and other entities of the software project.
The PDT, therefore, not only represents structural informa-
tion like an AST does, but also contains information such
as interactions and read or write accesses, i.e., behavioral
information. Similar fragments are detected by searching
for entities with similar characteristics of these PDTs. In
our current implementation of Coogle we do not examine
attribute accesses, but take interactions, such as method in-
vocations, into account. It would be interesting to extend

70

Coogle to operate on PDTs and compare the performance
of the two.

A similar approach to ours is described by Holmes & Mur-
phy in [4]. Their tool, Strathcona, is used to find source
code in an example repository by matching the code a de-
veloper is currently writing. In contrast to Coogle, this ap-
proach is not based on tree similarity algorithms, but on
multiple structural matching heuristics, such as examining
inheritance relationships, method calls, and class instanti-
ations. The measures are applied to the currently typed
code. Matched examples from the repository are retrieved
and displayed to the developer for selection. We have not yet
implemented such a feature in Coogle, which could clearly
help to foster code reuse. Again, it would be interesting
to compare their approach that makes heavy use of domain
knowledge (in the form of heuristics) with ours that solely
relies on the power of the similarity algorithms.

A promising approach to help developers navigate source
code efficiently is presented by Robillard in [11]. The pre-
sented technique is able to find relevant (in our context sim-
ilar) elements in source code to a given query element by
examining the topological properties of the structural de-
pendencies of the query element. Elements are considered
as relevant if they fulfill well-defined criteria, such as speci-
ficity and reinforcement to other elements. In that context,
it would be interesting to know about the performance of
our implemented tree similarity algorithms as another crite-
ria to determine relevant elements of interest.

Finally, various other approaches exist for detecting simi-
larity in trees and source code. Baxter & Manber describe a
tool that analyses projects for duplicated code [1]. Their im-
plemented algorithm is based on abstract syntax trees and
employs a hashing function on code fragments for detecting
exact and near-miss clones. Myles & Collberg take a simi-
lar approach by using a birth-marking technique, deducing
unique characteristics from the instruction set of a program
to detect software theft [8]. While it would make perfectly
sense to use Coogle as a tool to find code clones and pos-
sible software plagiarisms, we currently only employ it to
find similarity between classes to, for instance, comprehend
software evolution steps.

6. CONCLUSION
In this paper we presented our approach to detect similar-

ities between different Java classes based on abstract syntax
trees. Similarity is calculated by means of three tree sim-
ilarity algorithms: bottom-up maximum common subtree
isomorphism, top-down maximum common subtree isomor-
phism, and the tree edit distance. We chose the FAMIX
model of object-oriented programming languages to repre-
sent the compared trees.

The trees under comparison are generated in two steps:
first, the abstract syntax tree representation of the source
code is built through Eclipse’s ASTParser, and second, our
AST2FAMIX parser traverses the abstract syntax tree and
builds a FAMIX representation from the nodes of the tree.
Finally, the similarity algorithms are used to determine the
degree of similarity between different FAMIX trees.

We validated our approach on two datasets: user-con-
structed test cases and the org.eclipse.compare-plug-in.
Of the three tree similarity measures, we found the tree edit
distance to produce the best results, followed by the top-
down maximum common subtree isomorphism algorithm.

Especially, when measuring the effects of small changes, the
tree edit distance measure proved to be very robust. When
evaluating our approach on the org.eclipse.compare-plug-
in, we successfully detected structural similarities between
classes of the same version. In addition, our approach proved
to be very promising when comparing different versions of
the project, i.e., when focusing on questions concerning soft-
ware evolution, for instance, how did the classes change from
one release to the next. Visualizing class similarities by the
use of heatmaps, we were able to illustrate this code evolu-
tion within the org.eclipse.compare-plug-in.

As our initial results have shown, our approach is very
promising. It (1) indeed identified similar Java classes, (2)
successfully identified the ex ante and ex post versions of
refactored classes, and (3) provided some interesting insights
into the within-version and between-version dependencies of
classes within a medium-sized Java project.

7. REFERENCES
[1] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier.

Clone Detection Using Abstract Syntax Trees. In Proceedings
of the International Conference on Software Maintenance,
pages 368–377, 1998.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke,and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addison
Wesley, 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Massachusetts, 1994.

[4] R. Holmes and G. C. Murphy. Using Structural Context to
Recommend Source Code Examples. In Proceedings of the
27th International Conference on Software Engineering,
pages 117–125, 2005.

[5] K. Kontogiannis. Program Representation and Behavioural
Matching for Localizing Similar Code Fragments. In
Proceedings of the 1993 Conf. of the Center for Advanced
Studies on Collaborative Research, pages 194–205, 1993.

[6] A. Michail and D. Notkin. Assessing Software Libraries by
Browsing Similar Classes, Functions and Relationships. In
Proceedings of the 21st International Conference on Software
Engineering, pages 463–472, 1999.

[7] G. Mishne and M. de Rijke. Source Code Retrieval using
Conceptual Similarity. 2004.

[8] G. Myles and C. Collberg. K-Gram Based Software
Birthmarks. In Proceedings of the 2005 ACM Symposium on
Applied Computing, pages 314–318, 2005.

[9] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding Source
Code Evolution Using Abstract Syntax Tree Matching. In
Proceedings of the 2005 International Workshop on Mining
Software Repositories, pages 1–5, 2005.

[10] Object Technology International, Inc. Eclipse Platform
Technical Overview. 2003.

[11] M. P. Robillard. Automatic Generation of Suggestions for
Program Investigation. In Proceedings of the 10th European
Software Engineering Conference, pages 11–20, 2005.

[12] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and
Applications of Tree and Graph Searching. In Proceedings of
the 21st ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 39–52, 2002.

[13] S. Tichelaar. FAMIX Java Language Plug-in 1.0. 1999.

[14] S. Tichelaar, P. Steyaert, and S. Demeyer. FAMIX 2.0: The
FAMOOS Information Exchange Model. 1999.

[15] G. Valiente. Simple and Efficient Tree Pattern Matching.
Technical Report LSI-00-72-R, Technical University of
Catalonia, Dec. 2000.

[16] G. Valiente. Algorithms on Trees and Graphs.
Springer-Verlag, Berlin, 2002.

[17] J. T.-L. Wang, H. Shan, D. Shasha, and W. H. Piel. TreeRank:
A Similarity Measure for Nearest Neighbor Searching in
Phylogenetic Databases. In Proceedings of the 15th
International Conference on Scientific and Statistical
Database Management, pages 171–180, 2003.

[18] K. Zhang, R. Statman, and D. Shasha. On The Editing
Distance Between Unordered Labeled Trees. Information
Processing Letters, 42(3):133–139, 1992.

71

Mining Version Archives for Co-changed Lines

Thomas Zimmermann1 Sunghun Kim2 Andreas Zeller1 E. James Whitehead Jr.2
1 Department of Computer Science

Saarland University
Saarbrücken, Germany

{tz, zeller}@acm.org

2 Department of Computer Science
University of California
Santa Cruz, CA, USA

{hunkim, ejw}@cs.ucsc.edu

ABSTRACT
Files, classes, or methods have frequently been investigated in re-
cent research on co-change. In this paper, we present a first study at
the level of lines. To identify line changes across several versions,
we define the annotation graph which captures how lines evolve
over time. The annotation graph provides more fine-grained soft-
ware evolution information such as life cycles of each line and re-
lated changes: “Whenever a developer changed line 1 of version.txt
she also changed line 25 of Library.java.”

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—corrections, version control; D.2.9
[Management]: Software configuration management

General Terms
Management, Measurement

1. INTRODUCTION
One of the most frequently used techniques for mining version
archives is co-change. The basic idea is that items that are changed
together, are related to each other. These items can be of any
granularity; in the past co-change has been applied to changes in
modules [7], files [2], classes [8], and methods [14]. All these ap-
proaches stopped at the granularity of methods. Applying them to
more fine-grained items such as blocks or lines seemed infeasible,
in particular since they are difficult to identify across versions.

Typically lines are identified by their line number. However,
since lines may be moved within files, e.g., when other lines are
inserted or deleted before, line numbers are not fixed across ver-
sions and thus not suitable as identifiers for co-change analysis.
We abstract line evolution from line numbers by representing each
line as several nodes in a graph (one node for each revision); edges
connect lines (nodes) that evolved from each other. We call this
graph an annotation graph (Section 2).

Today, many SCM systems such as CVS and Subversion come
with an annotation feature that returns for each line the last mod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

inserted

r2
1

5

9

10

11

12

13

17

18

19

23

r3
1

5

9

10

11

12

13

17

18

19

23

r1
1

5

9

10

15

16

20

modified

modified

Figure 1: Tracking lines with the annotation graph.

ification. Such information is not enough to track lines across re-
visions. In contrast, using the annotation graph we can build more
general annotation algorithms that return all past modifications in-
stead of just the last one (Section 3). Such annotations provide
information about the life cycle of lines (Section 4).

In recent research, data mining on co-change information was
used to recommend related locations such as files [13] and meth-
ods [16] after one initial change. In Section 5 we show that this
is also possible for lines: “Whenever a developer changed line 1
of version.txt she also changed line 25 of Library.java.” In Sec-
tion 6 we discuss related work and Section 7 closes the paper with
an outlook on future work.

2. TRACKING LINES
Tracking how lines evolve over time requires the identification of
lines across several versions of a file. Within one single version,
lines are typically identified by line numbers or in some cases by
their contents. However both cases do not work when applied to
several versions: line numbers may change when other lines are
deleted or inserted, and the content of lines may be modified.

2.1 What are Annotation Graphs?
To capture how lines evolve over time, we introduce the annotation
graph. The annotation graph is a multipartite graph where each part
corresponds to one version of a file. Within each part/version every
line is represented by a single node; edges between node indicate
that a line originates from another: either by modification or by
movement. Whether a line was changed in a revision is captured
by labels, e.g., bold nodes indicate changes lines.

72

As an example consider Figure 1 which represents several
changes in an annotation graph. Edges connect lines that relate
to each other across revisions, e.g., line 1 in revisions r1, r2, and
r3. Modifications such as from lines 16–20 in r1 to lines 19–23
in r2 result in a complete bipartite subgraph for that area. In other
words, every node from 16 to 20 in r1 is connected with every node
from 19 to 23 in r2.

Formally, an annotation graph G = (V, E) for a file with n revi-
sions r1, . . . , rn (sorted by their creation time) consists of nodes

V =
n[

i=1

{(ri, m) | m ∈ {1, . . . , number of lines(ri)}}

and edges e = ((ra, la), (rb, lb)) ∈ E for which

1. rb is a direct successor of ra and

2. lb originates from la—either by modification (contents dif-
fer) or by movement (contents and relative position are
equal)

Additionally, when lines were changed, we label the correspond-
ing nodes with a description of the change such as the author
who changed the lines, or the transaction in which the lines were
changed.

2.2 How to Read GNU’s diff
In order to construct an annotation graph, we need to compare all
subsequent revisions of a file. For computing textual differences,
we use the GNU diff tool. The diff tool returns a list of regions that
differ in the two files; each region is called a hunk. Basically, there
are three different kinds of changes:

Modifications. In an annotation graph, modifications result in a
complete bipartite subgraph like in Figure 1 between lines
16–20 in revision r1 and lines 19–23 in revision r2.

Additions. For the annotation graph, additions do not result in any
edges, only the positions of following lines are updated. In
Figure 1, the lines 10–12 are inserted in revision r2, thus line
10 of revision r1 corresponds to line 13 in r2.

Deletions. For the annotation graph, deletions do not result in any
edges, only the positions of following lines are updated.

When comparing two text files with diff, we specified the –text,
–minimal, and –strip-trailing-cr options. These options turned out
to be very effective to return a small set of differences and to ad-
dress the carriage return problem that diff and CVS suffer from.

2.3 How to Compute Annotation Graphs
Once we have computed the changeregions for all subsequent revi-
sions, we can use this information to build an annotation graph for
a file. When computing an annotation graph, one can either start
from the first revision computing forward (to the last revision), or
start from the last revision computing backward. We now describe
a forward-directed algorithm that starts with the first revision; fore
more details we refer to the extended version of this paper [15].

First the algorithm creates nodes for each revision and each
line with the method createNode. Next, it iterates over all pairs
(revL, revR) of subsequent revisions. For each pair it computes the
differences (hunks) between revL and revR which then are sorted
by their position R from in the later revision revR. These hunks are
then processed to create edges between nodes:

– for unchanged lines exactly one edge between the matching
lines posL and posR;

large modification ignore large modifications

42 42

Figure 2: Ignoring large modifications for annotation graphs.

– for modified lines all possible edges, which means
posL ∈ {L from . . . , L to} and posR ∈ {R from . . . , R to};

– for inserted and deleted lines no edges are created.

For modifications and additions, we label the nodes of the later
revision revR with information about the change, such as author and
transaction. These labels are later used to compute annotations that
are more general than the ones provided by existing SCM systems
(see Section 3).

2.4 How to Recognize Large Modifications
One problem for annotation graphs are changes that modify large
parts of a file, since they results in a large number of edges. As an
example consider the left part of Figure 2. When we investigate the
evolution of line 42 and go back in time, we come across a large
modification. If we take this modification into account, line 42
originates from every modified line. Such a result is not reasonable
for evolution analysis.

In order to reduce noise, we treat large modifications not as a
modifications but as combined deletions and additions. This means
that for large modifications, we do not create any edges in the an-
notation graph (see the sketch in the right part of Figure 2).

For recognizing large modifications we use a heuristic. Let
lengthL and lengthR be the lengths of the left (L) and right (R) re-
gion of a hunk fct, and file lengthL and file lengthR be the lengths
of the corresponding files. A hunk is a large modification if one of
the following conditions hold:

– Region lengths exceed a threshold

lengthL > max(α · file lengthL; β)
∨ lengthR > max(α · file lengthR; β)

– Ratio of region lengths exceeds a threshold

lengthL

lengthR

<
1

γ
∨ γ <

lengthL

lengthR

The first condition recognizes changes that affect large parts of a
file, in contrast, the second one recognizes changes that insert or
delete large portions to or from a region. For our experiments, we
used α = 0.10 and β = γ = 4.

3. ANNOTATING LINES
Most SCM systems come with an annotation feature that returns
for each line when it was inserted and by whom. For instance, the
CVS annotations in Figure 3 for revision 1.17 of file Foo.java, tell
us that line 39 was inserted by Mary in revision 1.10 and line 40
was inserted by Kate in revision 1.14. In this section, we briefly
show how to compute such annotations using the annotation graph.
While SCM systems typically return only information about the
last change, the annotation graph can provide more general anno-
tations that collect information about all past changes.

73

$ cvs annotate -r 1.17 Foo.java
. . .

19: 1.11 (john 12-Feb-03): public int a() {
20: 1.11 (john 12-Feb-03): return i/0;

. . .
39: 1.10 (mary 12-Jan-03): public int b() {
40: 1.14 (kate 23-May-03): return 42;

. . .
59: 1.10 (mary 17-Jan-03): public void c() {
60: 1.16 (mary 10-Jun-03): int i=0;

. . .

Figure 3: CVS annotations for Foo.java

Annotating with the last change. When computing annotations
for a revision rs, we perform for each line ls a backward-directed
breadth-first search in the annotation graph, starting from node
(rs, ls). The search stops when we visit a node (rx, lx) that is
labeled as a change (either the line was added or modified). We
then annotate the line ls with information from revision rx, such as
the revision identifier, the author, or the time of the change. Note
that for a line ls the last change is unique, thus lx and rx are unique
too. It may also hold that rs = rx in case (rs, ls) is already labeled
as a change.

Annotating with all changes. When annotating a revision rs with
all changes, we also perform for each line ls a backward-directed
breadth-first search in the annotation graph, starting from node
(rs, ls). However, we do not stop when visiting a changed node;
instead we collect for every visited node that is labeled as a change,
its information in (multi)sets. Once the breadth-first search is com-
pleted, we annotate the line ls with these sets.

4. LIFE CYCLE OF LINES
In order to investigate the life cycle of lines for the complete
ECLIPSE project (snapshot 2005-11-23) we annotated all text files
with information about all past changes. In particular, we collected
the revision identifiers and the authors. Additionally, we ignored
lines containing whitespace or single curly braces. Computing the
annotations took approximately 10 hours for 31,950 files.1Using
these annotations we provide answers to the following questions.

How frequently are lines changed? We computed for each line
the change count, that is the number of distinct revisions in its anno-
tation. Note that we also counted the addition of a line as a change.
Figure 4 shows the distribution of the change count broken down
to different file extensions. We observe that most lines are changed
only one time, in other words, they are inserted to a file and never
touched again. This is the case for almost every line in .dtd and
.txt files. In contrast, lines in .properties files are more
frequently modified (44% at least once). Such files are used to sep-
arate properties (e.g., text messages) from the actual ECLIPSE code.

How many developers change a line? see [15].

What are the most frequently changed lines? see [15].

5. FINDING RELATED LINES
In this section, we show how to compute related lines using fre-
quent pattern mining. In order to create the input for data mining,
we annotated all lines of ECLIPSE (snapshot 2005-11-23) with all
past changes. However, instead of revision ids that are only unique
per file, we used the corresponding transaction ids. As a result, we

1All experiments were run on an Opteron cluster using eight pro-
cessors, each with 2 Mhz and 2 GB memory.

Figure 4: How frequently are lines changed?

get for every line the set of transactions that changed this line is
the past. By using transactions instead of revisions, we are able to
recognize patterns that are spread across several files.

For our experiments with frequent pattern mining, we used the
Apriori algorithm [1]. In order to keep the complexity low, we
applied the following optimizations:

– ignore lines containing whitespace or just a single curly brace

– investigate only modifications (not additions)

– combine lines with exactly the same change history to blocks
and use blocks instead of lines as input for mining

Using the above optimizations, we could reduce the size of the in-
put for data mining from 4,493,244 changes on lines to 255,778
changes on blocks and the calculation time to 19 seconds. On the
new input we mined for all patterns that had a minimum support
count of 23. The support count tells us how frequently lines that
are part of a pattern have been changed together in the past. For
lower support thresholds the computation did either not finish or
ran out of memory (more than 16G). Improving the mining perfor-
mance will remain future work.

Because of the high support count threshold we found only
29 patterns and only two them were interesting. The first pattern
was found in file plugin.xml where several lines defining icons.
These lines were changed together 23 times.

line 666: icon=”nl/icons/full/obj16/package obj.gif”
676: icon=”nl/icons/full/elcl16/static co.gif”
686: icon=”nl/icons/full/elcl16/constant co.gif”
717: icon=”nl/icons/full/obj16/package obj.gif”
727: icon=”nl/icons/full/elcl16/static co.gif”
737: icon=”nl/icons/full/elcl16/constant co.gif”
750: hoverIcon=”nl/icons/full/elcl16/exc catch.gif”
752: disabledIcon=”nl/icons/full/dlcl16/exc catch.gif”
753: icon=”nl/icons/full/elcl16/exc catch.gif”
762: icon=”nl/icons/full/obj16/package obj.gif”
776: icon=”nl/icons/full/obj16/package obj.gif”
808: hoverIcon=”nl/icons/full/etool16/run sbook.gif”
810: disabledIcon=”nl/icons/full/dtool16/run sbook.gif”
812: icon=”nl/icons/full/etool16/run sbook.gif”

The second pattern was spread across three files: a text file ver-
sion.txt, and two Java files, both named Library.java, but within dif-
ferent directories. The lines contain the minor version of an SWT
component and were changed 171 times together.

version.txt line 1: version 3.215
j2me/. . . /Library.java, line 25: static int MINOR VERSION = 215;
j2se/. . . /Library.java, line 25: static int MINOR VERSION = 215;

74

Using the above pattern, we can infer association rules such as:
“Whenever a developer changed line 1 of version.txt she also
changed line 25 of Library.java.” Such a rule holds with a high
confidence of 87% (171 out of 196 changes).

6. RELATED WORK
In this section we discuss work that is related to annotation graphs.

Annotating revisions. Chen et al. developed the CVSSearch tool
that annotates source code with the log messages from the last code
change and uses this information to guide programmers using tex-
tual similarity [5]. Hassan and Holt annotated static dependency
graphs with sticky notes. A sticky note for a dependency contains
the developer who created it, including the time when it was created
and the log message that was provided with that change. In con-
trast to the work by Chen et al. and Hassan and Holt, the annotation
graph considers all changes and not only the last ones.

Related changes. Ying et al. [13] and Zimmermann et al. [16]
applied data mining on co-change information in order to recom-
mend related locations such as files or methods. We applied the
same data mining techniques, however, our focus was on lines and
not on coarse-grained items such as methods or files.

Origin analysis. Godfrey et al. [9] and Kim et al. [10] proposed
algorithms called origin analysis, which identify the same entities
over revisions by computing entity similarities—even when entity
name changes. Origin analysis is similar to our work in that origin
analysis tries to map entities over revisions, while the annotation
graph maps lines over revisions.

Small changes. Sliwerski et al. showed how to locate fix-induc-
ing changes in version archives [12]. A subset of fix-inducing
changes has been investigated under the name dependencies by Pu-
rushothaman and Perry [11] to measure the likelihood that small
changes introduce errors. Their dependency concept is similar to
the annotation graph, however our work focuses on the annotation
of line evolution in order to compute related changes.

7. CONCLUSION
In this paper we presented the annotation graph which captures the
evolution of lines. With this graph we carried out a first investiga-
tion of the life cycle of lines and pointed out that it is possible to
find related lines with co-change analysis. However, data mining
on co-changed lines is still expensive. Thus our future work will
focus on improving the mining performance and exploring other
mining techniques.

Origin analysis on lines. Modifications result in a complete bi-
partite subgraph, since we cannot figure out which lines are
changed to which lines (see Section 2.2). We will apply ori-
gin analysis [9, 10] in the line level to identify the origin of
each line. This will lead to more precise annotation graphs.

Large modifications. The parameters for recognizing large mod-
ifications (see Section 2.4) were selected after a manual in-
spection of several code changes. We are planning a sensi-
tivity analysis to determine how our results depend on the
selection of these parameters.

Increase mining performance. Frequent pattern mining on line
level turned out to be too extensive. As a first optimization
we combined lines that shared the same history to blocks.
This yielded first results, however only for patterns with high
support count values. Currently, we investigate other opti-
mizations to find interesting patterns that have a low support.

Visualize evolution of lines. Using the models and layout algo-
rithms implemented in EpoSee [4] and CCVisu [3] and frac-
tal figures [6], we plan to visualize line level co-changes to
identify related lines and to detect abnormalities.

Build tool support. We are currently developing plug-ins that will
integrate annotation graphs into the ECLIPSE development
environment. The user will be able to explore the evolution
of lines with an annotation graph browser and related lines
will be automatically displayed with tool tips.

8. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large

databases. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Proceedings of
20th International Conference on Very Large Data Bases (VLDB 1994), pages
487–499. Morgan Kaufmann, September 1994.

[2] J. Bevan and E. J. Whitehead Jr. Identification of software instabilities. In
Proceedings of the 10th Working Conference on Reverse Engineering (WCRE
2003), pages 134–145, Victoria, Canada, 2003. IEEE Computer Society.

[3] D. Beyer and A. Noack. Clustering software artifacts based on frequent
common changes. In Proceedings of the 13th IEEE International Workshop on
Program Comprehension (IWPC 2005), pages 259–268. IEEE Computer
Society Press, Los Alamitos (CA), 2005.

[4] M. Burch, S. Diehl, and P. Weißgerber. Visual data mining in software archives.
In Proceedings of the 2005 ACM symposium on Software visualization (SoftVis
2005), pages 37–46, New York, NY, USA, 2005. ACM Press.

[5] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, and A. Michail.
CVSSearch: Searching through source code using CVS comments. In
Proceedings of the IEEE International Conference on Software Maintenance
(ICSM 2001), pages 364–373, Florence, Italy, 2001. IEEE Computer Society.

[6] M. D’Ambros, M. Lanza, and H. Gall. Fractal figures: Visualizing development
effort for cvs entities. In Proceedings of the International Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT), pages 46–51.
IEEE Computer Society, Sept. 2005.

[7] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on
product release history. In Proceedings of the International Conference on
Software Maintenance (ICSM 1998), pages 190–197, Bethesda, Maryland,
USA, 1998. IEEE Computer Society.

[8] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history data for detecting
logical couplings. In Proceedings of the 6th International Workshop on
Principles of Software Evolution (IWPSE 2003), pages 13–23, Helsinki,
Finland, 2003. IEEE Computer Society.

[9] M. W. Godfrey and L. Zou. Using origin analysis to detect merging and
splitting of source code entities. IEEE Transactions on Software Engineering,
31(2):166–181, 2005.

[10] S. Kim, K. Pan, and E. J. Whitehead Jr. When functions change their names:
Automatic detection of origin relationships. In Proceedings of the 12th Working
Conference on Reverse Engineering (WCRE 2005), pages 143–152, Pittsburgh,
Pennsylvania, USA, 2005. IEEE Computer Society.

[11] R. Purushothaman and D. E. Perry. Toward understanding the rhetoric of small
source code changes. IEEE Transactions on Software Engineering,
31(6):511–526, 2005.

[12] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? In
Proceedings of the 2005 International Workshop on Mining Software
Repositories (MSR 2005), St. Louis, Missouri, USA, 2005. ACM Press.

[13] A. T. T. Ying, G. C. Murphy, R. T. Ng, and M. Chu-Carroll. Predicting source
code changes by mining change history. IEEE Transactions on Software
Engineering, 30(9):574–586, 2004.

[14] T. Zimmermann, S. Diehl, and A. Zeller. How history justifies system
architecture (or not). In IWPSE ’03: Proceedings of the 6th International
Workshop on Principles of Software Evolution, pages 73–84, Helsinki, Finland,
2003. IEEE Computer Society.

[15] T. Zimmermann, S. Kim, A. Zeller, and E. J. Whitehead Jr. Mining version
archives for co-changed lines. Technical report, Saarland University,
Saarbrücken, Germany, March 2006. Available at
http://www.st.cs.uni-sb.de/softevo/.

[16] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Mining version
histories to guide software changes. IEEE Transactions on Software
Engineering, 31(6):429–445, 2005.

75

http://www.st.cs.uni-sb.de/softevo/

Constructing Universal Version History
Hung-Fu Chang

University of Southern California
University Park Campus,

University of Southern California
Los Angeles, CA 90089

+1 213 740-9621

hungfuch@usc.edu

Audris Mockus
Avaya Labs Research

233 Mt. Airy Rd.
Basking Ridge, NJ, USA 07920

+1 908 696-5608

audris@avaya.com

ABSTRACT
Developers often copy code for parts or entire products to start a
new product or a new release. In order to understand the software
change history and to determine the code authorship, we propose
to construct a universal version history from multiple version
control repositories. To that end we create two practical code copy
detection methods at the level of the source code file: prefix-
postfix algorithm and prefix algorithm. The full pathname of a file
and its version history are used to construct the universal version
history of a file by linking together change histories of files that
had the same code at any point in the past. The assumption of
both algorithms is that developers often duplicate files by copying
entire directories. Once the copying is identified we propose an
algorithm to link version histories from multiple repositories in
order to construct universal version history. The results show that
about 41.32% of source files (in the repository involving more
than 6M versions of around 2M files) were duplicated among the
Avaya’s source code repositories for more than ten different
projects. The prefix-postfix algorithm is more suitable than prefix
algorithm due to the reasonable error rates after validation of the
known copying behaviors.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance and
Enhancement – Restructuring, reverse engineering, and
reengineering

General Terms: Algorithms, Measurement

Keywords
Cloning, Version Control, Change History, Code copying, Code
Authorship

1. INTRODUCTION
Software reuse is always a key factor to increase the speed of the
software development. Studies done by Baker (1995) and Lague
(1997) suggested that duplicated codes were 5% to 10% of the
source codes of large programs. Most projects are implemented
based on an existing piece of codes. Therefore, it is generally

believe that code cloning or code coping is often used in
developing industrial systems. Companies may use different
version control systems to maintain different projects due to the
evolution of version control systems and cross-organization work.
Hence, cloned codes are often distributed among different version
control systems.
A previous study [3] proposed that cloned sources were more
reliable than non-clone code. In that particular study the
maintenance cost of a duplicated module was less than for a non-
duplicated module. Furthermore, knowing clones may help fix
bugs in all cloned copies if a bug is detected in any one of them.
Understanding how code is cloned allows us to identify the
original authors of the program as well as determine the code
sharing relationships and interdependencies between people and
projects over time.
There are various kinds of cloned code detection methods that
have been proposed. Baxter (1998) used abstract syntax trees to
find out the cloned codes. Ducasse (1999) proposed a pattern
matching technique that divided programs into strings and then
the duplications were caught by comparing those strings against
each other. Kamiya (2002) developed a language independent tool
- CCFinder to find clone codes by matching token sequences that
were transformed from source files by lexical analysis. In
addition, in order to overcome the navigation difficulties of a
huge set of results generated by clone detection tool, Kapser
(2005) implemented a supportive tool for visualizing the clone
codes detected from CCFinder. However, these methods might
not be suitable to detect clones for source code version history
repositories because they could take enormous computation
efforts even on a single version of the code. With more than six
million versions in the repository we have analyzed assuming
average file size of 500 lines the CCFinder would require 13 days
if computer memory is not exhausted. We base this estimate on
the published 3 minute execution time for 500K lines of code
assuming linear complexity for CCFinder. Furthermore, the clone
size those techniques are targeting is fairly small in comparison to
a large software project. Moreover, the copying behaviors of
various versions of one project or projects to projects have not
been discussed in the existing methods. Therefore, we look at
algorithms that are appropriate for large code repositories
involving version histories.
The purpose of this paper is to introduce two algorithms that were
applied to detect the duplicated files in Avaya’s version control
repositories. A universal version history over different version
control systems was built according to the identified copies of the
files.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

76

2. METHOD
2.1 Methodology
It is computationally infeasible to detect cloned codes at the
function or syntax level for a very large population of files.
Therefore, our approach was to extract the possible clone code
files by examining the full pathnames of source code files in the
initial stage of clone detection and then find the duplicate code
from the candidate files. This allowed us to avoid computationally
intensive step of comparing the content of the files.
Base on the observations of product development we identified a
number of scenarios that could cause identical files with different
pathnames.

(1) A substantial amount of code copying takes place when
a software project copies the code base for a new release
or for a similar but distinct product.

(2) While such copies can be realized as branches in a
version control system, some projects create separate
instances of the version controlled files by copying them
into a separate directory.

(3) A different version control repository is usually used if
another organization is developing a similar product and
wants to have their own version control repository for
the code.

(4) In some cases, projects change the version control tools,
forcing the change in repositories.

Our definition of duplicated source files is that files have at least
one nonempty version between them (excluding spaces). In other
words, let a_1, …, a_n be versions of file a and b_1, ..., b_m be
versions of file b. Then a and b are duplicate if exists 1<=i<=n
and 1<=j<=m, such that a_i is identical to b_j (excluding white
spaces) and a_i is non-empty.
The methodology of this paper (see Figure 1) contains five
primary steps. Firstly, a list of filenames was analyzed and then
two algorithms were used to detect the common files. According
to known copies, the algorithms were calibrated or validated. To
trace authorship and version history of cloned files, a universal
version history was finally created by connecting the histories of
individual cloned source files.

Figure 1. Approach procedure

2.2 Algorithms
Based on the observed developers’ copying behaviors, in order to
duplicate files, developers often copy the entire directory. Hence,
the files sharing a name in any two folders may be identical.
Therefore, the directories that share a large fraction of filenames
should be identified first and then cloned files can be obtained by
comparing the files with a common name in such directories. As a
result, the goal of the following two algorithms is to retrieve the
potentially copied directories.

2.2.1 Terminology
To simplify presentation we introduce some terminology first.

(1) Division level: the full file path can be broken into
levels according to the '/' symbol (the repositories we
investigated are mostly in UNIX file system. We have
converted Windows '\' directory separator into UNIX '/'
for the few version repositories kept in Windows file
systems).

(2) Prefix and postfix: in the whole directory path of a file,
the part of the path preceeding the division level is
prefix and the remaining part of the path is postfix. For
example, for a path D_i/D_j/D_k. If D_i is the prefix,
D_j/D_k is the postfix if the division level is one.

(3) Common directory pair: if two directories are thought to
be the copied, these two directories are called the
common directory pair

(4) Common prefix pair: if two prefixes are thought to be
the copied, these two prefixed are called the common
prefix pair.

2.2.2 Prefix algorithm
The assumption of prefix algorithm is that directories i and j are
considered as candidates for common directory pairs as long as
there are at least certain portion of identical filenames in i and j. If
Ni and Nj are the number of files in i and j as well as nij is the
number of identical files in i and j, we use the following criteria in
order to identify common directory pairs among different version
repositories. The nij divided by Nmin should be larger than a cutoff
coefficient, where Nmin= min(Ni, Nj). In other words, the fraction
of files with identical names has to exceed a cutoff for a smaller
directory in order to consider two directories to be potentially
copied. We use this criterion to make sure that common filenames
used in many unrelated projects such as, system.h, config.h, and
main.c, do not affect our algorithm.
As long as those common directory pairs were extracted, a group
of identical directories can be produced by using transitive law;
that is, if we found a common directory pair (i,j) and a common
directory pair (j,k), directories i, j, and k are identical. After a
group of identical directories was gathered, those potential
identical files can be matched under those identical directories.

2.2.3 Prefix - Postfix algorithm
The prefix – postfix algorithm is very similar to the prefix
algorithm with one additional procedure. The new assumption is
that prefixes i and j are considered as candidates for the common
prefix pair if the result of the number of common postfixes
following prefixes i and j divided by the minimum of the number
of postfixes after prefixes i and j is larger than a cutoff coefficient
of the criterion, the prefixes are considered to be common. Instead

77

of counting the fraction of common files in two directories as in
the prefix algorithm, we are counting the fraction of postfixes.

Like gathering identical directories in prefix algorithm, those
identical prefixes can be grouped and then the identical postfixes
under the identical prefixes can be found.

2.3 Creating the Universal Version History
The files that are identified as copied are ordered according to the
initial creation time of each file. The oldest one of them is
assumed to be the main trunk of the universal version, while the
other files are connected to the main trunk. If two files do not
share the content for any version, they are considered not copied.

Figure 2. Universal version building procedure

For example, if two files, A and B are copied (see Figure 2), four
possible merges of version histories may be appropriate
depending of the versions of file A and File B that are identical.
The assumption of this rebuilding process is that the first version
of the later file should be copied from some version of the earlier
file and then the later file is changed. Therefore, this approach has
been simplified. We only connected the first version of the branch
file to the main trunk file even though a later version of branch
file was the same as any versions of the main trunk file. For
instance, we do not connect 2.0 and 3.0 of B to any versions of A
(see Figure 2).

3. RESULTS
The Avaya's version repositories we have analyzed contained
more than 6M versions of more than two million source code
files. From our previous work with various projects, we have
identified the known cloned cases. We used the Type I & II error
method to validate both algorithms. Type I error identifies the
fraction of file pairs (i, j) not known to be copied that were
identified by our algorithms as copied. Similarly, Type II error is

the fraction of the pairs (i, j) known to represent copied files that
our algorithm did not identify as copied. The population size of
directory pairs is n(n-1)/2, where n is the number of the total
directories we explored. Obviously, the number of d_i = d_j
represents only a small part of the population; therefore, the Type
I error for both algorithms were small. However, the Type II error
of the prefix algorithm was fairly large (see Table 2, 3). Therefore
we used prefix–postfix algorithm to identify the copied files.

Table 1. Type I and II errors of prefix – postfix algorithm

Experimental results d_i <> d_j d_i = d_j

D_i <> D_j 2154385410
Type I error:

28804
(Rate: 1.34E-03%)

Known
cases:

D_i = D_j

Type II error:
822

(Rate: 1.5%)
53867

Table 2. Type I and II errors of prefix algorithm

Experimental results d_i <> d_j d_i = d_j

D_i <> D_j 2153498853
Type I error:

915361
(Rate: 0.042%)

Known
cases:

D_i = D_j

Type II error:
20871

(Rate: 38.1%)
33818

An observation of the program file naming behavior indicates
some common filenames that are often used in many unrelated
software projects; for example, programmers often used “main.c”
for the entry program of C or C++, “help.c” for the instruction file
or “main.h” for include files. Hence, we excluded these high
frequency filenames when counting the number of identical
filenames (nij) between two directories. The experiment showed
that about 41.32% of the total files were identical. These common
files came from different projects and programming languages.
The algorithms are implemented in the Perl programming
language and were run on a Sun V40Z machine that contains 16G
RAM and dual Opteron CPUs, running SunOS 5.10. for
processing more than 6M versions of more than 2M files. (Each
file had its version history.) The approximate computational time
of these two algorithms and the rebuilding procedure is shown in
Table 3.

Table 3. Computation time comparison

 Time

Prefix 2.1 hours Clones Extraction
Prefix – postfix 5.1 hours

Universal Version Construction 10.2 hours

The whole universal building process includes two steps – (1)
matching the identical files from the common directories that we

78

acquired via prefix-postfix algorithm; (2) integrating versions
among the identical files. The total time of this process is about
10.2 hours.

4. DISCUSSION
We presented two practical algorithms for detecting the copied
files in multiple large version control repositories. Although the
prefix – postfix algorithm could provide more accurate results, it
needed much more computation time than the prefix algorithm.
These two detection methods identify copies only if filename does
not change. Therefore, we cannot detect the copies if the
programmers modified the filename. Besides, these methods may
not be effective for other copying strategies that are not
considered in our assumption, like programmers randomly copy
the file without duplicating the entire directory. However, there
are some advantages of this approach. It can identify clones over
multiple versions, for various programming languages, and for
multiple version control repositories. The processing speed of this
method is also acceptable for identifying clones in multiple very
large version repositories. The main value of constructing
universal version history is to identifying code authorship and
copying patterns over multiple large repositories.

5. FUTURE WORK
Although prefix – postfix algorithm provides some advantages for
finding the clones of different programming languages in
distributed huge repositories, the method can only identify
identical source files; that means, similar but not identical files or
copied source code segments cannot be found. This implies that
those more detail level clone identifying methods are
complimentary to our approach and could be combined in future
studies.
Since we did not consider more complicated possible version
history construction situations, a more complete universal version
history building method should be further investigated.
The scripts used to implement the described algorithms are
available upon request from authors.

6. ACKNOWLEDGMENTS
Our thanks to Avaya Labs Research for providing us all the
resources.

7. REFERENCES
[1] Brenda Baker. On finding duplication and near duplication

in large software system, IEEE Working Conference on
Reverse Engineering 1995.

[2] B. Lague, D. Proulx, E. Merlo, J. Maryland, J. Hudepohl,
Assessing the benefits of incorporating function clone
detection in a development process, IEEE International
Conference on Software Maintenance 1997.

[3] Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin-ichi
Sato and Ken-ichi Matsumoto. Software quality analysis by
code clones in industrial legacy software, Proceedings of the
8th International Symposium on Software Metrics 2002.

[4] Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo
SantAnna and Lorraine Bier. Clone detection using abstract
syntax trees. In Proceedings of the 8th International
Symposium on Software Metrics 1998.

[5] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
International Conference on Software Maintenance 1999.

[6] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic token-based code clone detection system for
large scale source code. IEEE Trans. Software Engineering,
Vol. 28, No.7, 2002.

[7] Cory Kapser and Michael W. Godfrey. Improved tool
support for the investigation of duplication in software.
International Conference on Software Maintenance 2005.

79

Concern-Based Mining of Heterogeneous Software
Repositories

Imed Hammouda
Tampere University of Technology

Institute of Software Systems
P.O. Box 553

FI-33101 Tampere, Finland

imed.hammouda@tut.fi

Kai Koskimies
Tampere University of Technology

Institute of Software Systems
P.O. Box 553

FI-33101 Tampere, Finland

kai.koskimies@tut.fi

ABSTRACT
In the current trend of software engineering, software sys-
tems are viewed as clusters of overlapping structures rep-
resenting various concerns, covering heterogeneous artifacts
like models, code, resource files etc. In those cases, ade-
quate search mechanisms for software repositories should be
based on such fragmented nature of software systems, allow-
ing concern-oriented queries on the system data. For this
purpose, we propose a conceptual framework for a concern-
oriented query language for software repositories. A pattern-
based implementation scheme is discussed, exploiting exist-
ing tools. The applicability of the approach is studied in the
context of an industrial case study.

Categories and Subject Descriptors
D.2 [Software Engineering]: Miscellaneous

General Terms
Documentation

Keywords
Heterogeneous software repositories, concern-based mining,
pattern-based search structures

1. INTRODUCTION
Software repositories have traditionally been understood

as collections of source artifacts that consist of either mono-
lithic source text [15] or higher-level data structures storing
the essential information contained by the source [5]. In
both cases, the information in the repository is organized
according to the structures and semantics of the underlying
programming language. Using this kind of organization cre-
ates a gap between the repository and the needs of various
stakeholders: it is often difficult to express high-level infor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the fi rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

mation needs in terms of the low-level concepts provided by
the repository.

For example, a maintainer may be interested to identify
those parts of the system that are related to the persistency
issues concerning the copy-and-paste feature of the system.
Mapping such information request to the source structures
is virtually impossible without substantial additional knowl-
edge about the ways copy-and-paste and persistency are im-
plemented in the system, no matter how detailed informa-
tion about the source is stored in the repository.

We argue that there should be a convenient mechanism
that allows us to incorporate information about the antic-
ipated concerns of the system stakeholders into the soft-
ware repository, and that the search engine should exploit
this information. In this way the high-level requests of the
stakeholders can be mapped to the low-level structures of
the source. The required information is inherently external:
it cannot be inferred from the system with any automatic
means. This is in contrast to traditional techniques such as
adding special comments to code or informal notes to UML
diagrams [17]. However, the results of queries may introduce
new information which can be cumulated in the repository.

Another major requirement for a software repository is its
ability to support heterogeneous software artifacts. Many
stakeholders are not interested in source code only, but in
requirements and feature models, in architectural and de-
sign models, in scripts, resource files etc. Most concerns are
related to several artifact types expressed in different lan-
guages and notations. Thus, queries on the software repos-
itory should yield results that span heterogeneous artifacts.

In this paper, we propose a concern-based organization of
a software repository, with an external structure represent-
ing the relevant concerns. The result of a query is always
a concern as well, possibly added to the set of persistent
concerns. The actual software artifacts are not touched, but
only referenced in the external structure. The overall ap-
proach is depicted in Figure 1.

The technical solution for representing concern structures
may vary. In this paper, we investigate the possibility to use
a pattern-based approach, which has certain advantages. In
particular, this approach lends itself to capturing software
elements in heterogeneous artifacts, fast concern manipula-
tion, overlapping concerns, and existing tool support. How-
ever, the basic idea could be realized using other techniques,
too.

The resulting concern-based information about the soft-
ware system can be displayed and exploited in various ways.

80

Concern

structures

Software

artifacts

Mined

concern

Query

Possible adding to repository

Figure 1: Concern-oriented repository mining.

We assume that the concerns (including the concerns result-
ing from the queries) can be traced and visualized by a tool,
allowing the construction of various concern-based views on
the system.

We will proceed as follows. In the next section we dis-
cuss the multidimensional nature of software systems and
the use of concerns as the basic unit of queries. In Section
3 we briefly explain the concept of a pattern and how it can
be used to represent concerns in a software repository. Sec-
tion 4 briefly discusses tool support for the pattern-based
mechanism. The approach is demonstrated in the case of an
industrial system in Section 5, and some concluding remarks
are presented Section 6.

2. DECOMPOSITION OF SOFTWARE AR-
TIFACTS

We assume that the artifacts of a software system consist
of sets of artifact elements. The elements of a set have the
same type, e.g model or code elements, but the sets are het-
erogeneous. Each set is associated with a specific artifact
type and addresses certain concerns in the software system.
From the concern point of view, a set can address one or
many concerns. For instance, given an MVC-based (Model
View Controller [13]) implementation of an arbitrary soft-
ware system, the code representation of the architectural
style may address several functional features of the system.
Thus, from the architectural point of view the MVC part of
the system addresses one concern, but from the functional
point of view several concerns are involved.

This decomposition scheme is discussed in Figure 2. The
top cubical structure illustrates the decomposition of a sys-
tem based on its artifact types. Each top cube represents
a set that groups together artifact elements that are of the
same type. Each of these sets can be further decomposed
into smaller sets based on the concerns addressed in the ar-
tifact elements of that set.

The fragmented nature of software systems is naturally
reflected in the process of mining software repositories as
the goal of any repository search operation is to retrieve the
elements of that repository that address a certain matter
of interest. Furthermore, the search operations themselves
could be based on the outcome and the combination of other
search operations. To give an example, system maintainers
are usually interested in those parts of the system data that
are relevant to their actual maintenance needs. As the con-
text of maintenance changes during the system evolution
process, new fragments of the system, in addition to the
current ones, might become relevant. The natural relation-

Decomposition based on

system artifact types

Decomposition based on

system concerns

Figure 2: Decomposition of a software system.

ship between system fragments and the concerns they treat
advocates the need for a concern-oriented query language.
As the fragments represent heterogeneous sets of repository
elements, we can express the elements and the operations of
this language in terms of set theory [7] concepts and termi-
nology.

In the context of concern-based decomposition of software
repositories, we can define a set (S) as an unordered group
of artifact elements (E0, E1, E2 ...) with no duplicates. It is
possible, however, to decompose sets of repository elements
into smaller sets (S = S0 + S1 + S2 ...). Considering the
example given earlier, the MVC-based source code can be
decomposed into smaller sets of code elements, each repre-
senting a certain functional feature. During the decomposi-
tion process, the same artifact element may be placed into
different sets. This is the case for elements that address
multiple concerns.

There are two special cases of sets: the empty (∅) and the
universal set (U). For software systems, the universal set
is a heterogeneous collection of elements that represent all
system artifacts. No concern-based logical system decompo-
sition, however, can lead to sets that are empty. Empty sets
can only be results of arbitrary search operations performed
on the concern-based decomposition of the system.

Based on the above discussion, let us consider two ar-
bitrary system concerns C1 and C2 and two sets S1 and
S2 containing the artifact elements addressing concerns C1
and C2, respectively. We can define different concern-based
queries on C1 and C2. We assume that sensible concern-
based queries can be formulated using the classical set op-
erations: union, intersection, complement, and difference.
While other set operations (like Cartesian product) could
be realizable as well, it seems that they are less useful in
practice for concern-based queries.

• Concern merging. The merging of the two concerns
C1 and C2 can be expressed as the union of the two
sets S1 and S2, which is the set S containing all the
elements in either S1 or S2. The elements of S address
either concern C1 or concern C2. This operation is
denoted using the ’+’ symbol: C = C1 + C2.

81

• Concern overlapping. The overlapping of the two con-
cerns C1 and C2 can be expressed as the intersection of
the two sets S1 and S2, which is the set S containing all
the elements that are in both S1 and S2. The elements
of S address both concerns C1 and C2. This operation
is denoted using the ’&’ symbol: C = C1 & C2.

• Concern slicing. The slicing of the concern C1 with
respect to the concern C2 can be expressed as the dif-
ference of the two sets S1 and S2, which is the set S
containing all the elements that are in S1 but not in S2.
The elements of S address concern C1 but not concern
C2. This operation is denoted using the ’-’ symbol: C
= C1 - C2.

• Concern exclusion. The exclusion of concern C1 can
expressed as the complement of the set S1, which is
the set S containing all the elements in the universal
set U except those in S1. The elements of S address
all other concerns except concern C1. This operation
is denoted using the ’c’ symbol: C = C1c.

To give an example, consider a software system with a
repository containing models, programs, resource files, project
documentation, etc. The software system provides differ-
ent security strategies and requires user authentication for
many of the functionality it implements. We can, there-
fore, identify two system concerns: security (say Sec) and
user authentication (say Auth). In the context of those two
system concerns, the four above concern operations can be
viewed as searching for all repository elements addressing
security or user authentication (merging, Sec + Auth), el-
ements representing user authentication security (overlap-
ping, Sec & Auth), elements corresponding to all security
aspects except those for user authentication (slicing, Sec -
Auth), and elements addressing all other concerns except
security strategies (exclusion, Sec

c).

3. PATTERNS AS SEARCH STRUCTURES
As a tool infrastructure for concern-based querying, we

use the concept of aspectual patterns [10] to represent arbi-
trary concerns in software repositories. Figure 3 depicts a
conceptual model in UML for aspectual patterns. A pattern
is a collection of hierarchically organized roles rather than
concrete repository elements. A pattern is used to collect to-
gether all repository elements that address a certain system
concern. This is done by binding pattern roles to certain ele-
ments of the repository representing that concern. Each role
can be associated with a set of properties that can be used
for the search operations. An example property could be
a textual description tag explaining the purpose of the role
binding. Another example property is the type of the role.
The role type determines the kind of repository elements
that are bound to the role, e.g. model elements (UML ele-
ments), source code (Java elements), resource data (binary
documents), project documentation (text file and file frag-
ments), etc.

A concern-based decomposition of a software repository
partitions that repository into a number of fragments. At
the elementary level, each fragment corresponds to exactly
one system concern. Each of these fragments is represented
by a separate pattern.

The elements of a fragment may refer to or depend on
each others. In many cases, the relationship between two

Role

Pattern

Property

Repository Element

1

is bound to

Dependency
target

source

0..1

parent

child

Repository

multiplicity

Repository

Fragment

1

1

1

1

1

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

1

0..*

Figure 3: Conceptual model for aspectual patterns.

elements is implicit and cannot be marked in the fragment.
For example, it might be hard to express that a binary file
is a resource for a certain implementation class. Such a
relationship can be easily made explicit in the pattern using
role dependencies.

It is possible to bind the same pattern role to multiple
repository elements. This is the case if multiple elements
play that specific role. The possibility to bind a role to
multiple elements (and the optionality of certain roles) is
indicated using the multiplicity attribute of the role. For
example, if a role has multiplicity [0..1], the role is optional
in the pattern (and thus in the concern).

Figure 4 illustrates how patterns are bound to repository
elements. There are two patterns X and Y. Each pattern
represents a separate system concern and is associated with
a repository fragment. Each fragment contains the elements
that address the corresponding concern. The fragments do
not have to be aligned with the physical or logical distri-
bution of the repository. In Figure 4, the fragment that is
associated with pattern Y contains elements cutting across
different packages. Furthermore, the example fragments are
overlapping, there is a repository element that addresses
both concerns. Roles r2 and r3 are bound to the same ele-
ment while r7 represents the role of two different elements.
The repository may contain elements that are not referred
by the patterns. Such elements do not correspond to any
anticipated concern and do not manifest in the repository
mining process. Similarly, patterns may have unbound roles.
Such roles may represent possible extension points of the
corresponding fragments.

Using role-based pattern structures, the concern opera-
tions we identified in the previous section can be realized in
a straightforward way.

• Merging operation. The merging of the two patterns
X and Y returns a new pattern with roles bound to all
repository elements referred by either X or Y. In the
example case, the resulting pattern references elements
of both fragments (six elements).

82

r6

b2

r8

r4

b7

b3

b7'

r5

r2

b5

r9

r3

Repository elementsRole bindings

Pattern & roles

r7

b6

Pattern X

Pattern Y

b1

r1

r10

Figure 4: Aspectual patterns as search structures.

• Overlapping operation. The overlapping of the two
patterns X and Y returns a new pattern with roles
bound to all repository elements referenced by both
patterns. In the example case, the resulting pattern
references one element (corresponding to binding b3
and b5).

• Slicing operation. The slicing of pattern Y with respect
to pattern X returns a new pattern with roles referring
to repository elements bound to roles of Y but not to
roles of X. In the example case, the resulting pattern
references three elements (corresponding to bindings
b6, b7 and b7’).

• Exclusion operation. The exclusion of pattern Y re-
turns a new pattern referring to all elements not bound
to the roles of Y. In the example case, the result-
ing pattern references two elements (corresponding to
bindings b1 and b2). Note that the universal set rep-
resents only the bound repository elements, the other
unbound elements (three elements) are not considered
for any concern queries.

In addition to the above search mechanisms, patterns can
be exploited to provide support for other ways of mining
tasks. This is achieved by using the properties attached to
pattern roles or by accessing the properties of the referenced
repository elements themselves. For instance, we might be
interested in retrieving repository elements of certain types
or simply those elements whose role properties match certain
criteria.

As explained earlier, the approach discussed in this paper
assumes that the repository comes with an initial annota-
tion that represents an original concern-based clustering of
the repository elements. Each cluster addresses a specific
system concern and is therefore represented by a separate
pattern. During the mining process, the repository is ex-
plored by visiting the appropriate patterns, following role
bindings (to the repository elements), and investigating the
properties of the pattern roles. Based on the original pat-

Java

role types
File

role types

XML

role types

XML docs
Java

source

UML

models
Binary &

text Files

UML

role types

Pattern tool GUI

UML editorJava editorFile editor

Pattern engine

Figure 5: Architecture of the MADE environment.

terns, new clusters corresponding to other concerns (and
concern combinations) can be constructed by applying the
search mechanisms discussed earlier. As the search results
are in fact returned as new patterns, these new patterns
could be added to the original annotation and might them-
selves be used in future mining operations. In the case study
section, we will give a concrete example of such a scenario.

4. TOOL SUPPORT - MADE
In order to demonstrate the pattern-based approach for

representing concern structures, we use an Eclipse-based
[6] pattern-driven development environment called MADE
(Modeling and Architecting Development Environment [11]).
Figure 5 depicts a layered architecture of the MADE tool
environment. The pattern engine represents the core com-
ponent of the platform. It is used to manage the binding
process and is thus independent of any artifact types. Cur-
rently, the environment provides support for binding pattern
roles to UML, Java, XML, and general file (binary and text)
elements.

The pattern tool GUI provides different views and wizards
for creating new patterns, adding roles to patterns, bind-
ing roles to repository elements, viewing role bindings, and
tracing bindings to their corresponding repository elements.
When a bound element is retrieved, it can be viewed in its
own editor. Currently Rational Rose is used as the UML
editor. Therefore, only Rose-based UML models can be
browsed. For Java, XML, and general file content, Eclipse-
built-in editors are used.

Furthermore, the MADE platform comes with mechanisms
for browsing and highlighting patterns (concerns) in the
repository data. The biggest limitation of the tool, how-
ever, is that search operations, as presented in this paper,
are not currently implemented. We are planning to add such
support in future releases of the platform. Nevertheless, it
is still possible and beneficial to use the tool in its current
state to construct an original concern-based annotation of a
repository and present that as a documentation tool for sys-
tem learners. Another limitation of the tool is that MADE
pattern roles are strongly typed. In order to support other
repository element kinds (such as other programming lan-
guage elements), the tool has to be extended with new role
types.

83

Platform Application Libraries

Concurrency MVC

Framework
...

Platform

Application

Management

Platform Service

Interface

Platform Service

Implementations

Management Applications

...

Application

Trampoline

Figure 6: Architecture of Nokia GUI platform.

5. CASE STUDY
Network management represents one of the core busi-

nesses of Nokia. For managing networks and network el-
ements, the company produces a family of NMS (Network
Management System) and EM (Element Manager) applica-
tions. The GUI parts of the applications are developed based
on a common platform. The main purpose of the platform
is to help developers to build Java-based GUIs and to make
sure that NMS and EM applications share the same features.
The GUI platform has been developed as an object-oriented
Java framework. New management applications are con-
structed by specializing parts of the framework and using
the common services offered by the platform.

Figure 6 depicts a logical decomposition of part of the GUI
platform consisting of several independent logical blocks.
The upper layer (Management Applications) stands for the
NMS and EM applications. They are not part of the plat-
form but they are built on top of it. The middle layer shows
a number of platform subsystems:

• Platform Application Management. The purpose of
this subsystem is to keep track of running applications
and to manage the starting of new applications.

• Platform Service Interface. This component defines
the abstract interfaces to the services offered by the
GUI platform. Example services include logging, au-
thentication, and online help facilities

• Platform Application Libraries. This subsystem pro-
vides common features used for building new network
management applications. Example features include
concurrency control and an MVC-based framework

The bottom layer shows a block representing Platform
Service Implementations. The GUI platform comes with a
number of default service implementations. If needed, ap-
plication developers can provide their own service imple-
mentations based on the service interfaces. The Application
Trampoline component represents an external interface to
Application Management for allowing processes outside the
virtual machine to start new applications in the same virtual
machine.

The system repository for the platform comes with a wide
range of artifact types including design models, source code,
executable jars, property files, deployment descriptors, user
manuals, technical development documents, managerial pre-
sentations, etc. In addition to platform artifacts, the repos-
itory also contains example applications built on top of the
platform.

Table 1: Example platform concerns

Concern

Category
Concerns Artifact types

Component
concerns

Application
Management
(AppMan),
Application Tram-
poline (AppTram)

Jars, UML
design models,
Java source files,
documents

Feature
concerns

Authentication
(Auth),
Online help (On-
lineHelp)

Jars, UML feature
and design mod-
els, Java source
files, XML descrip-
tors, documents

Architectural
concerns

MVC (MVC),
Layered architec-
ture (layered)

UML architectural
and design models,
Java source files,
documents

Maintenance
concerns

Adding alternative
service
implementation
(AltServImp),
Modifying service
interfaces (Mod-
ServInt)

UML design mod-
els, Java source
code, documents

Specialization
concerns

Feature specializa-
tion (FeatSpec),
GUI specialization
(GUISpec)

UML design
models, Java
source code, XML
descriptors, docu-
ments

Global
concerns

Persistency (Pers),
Security (Sec)

UML design mod-
els, Java source
code, documents

As an original annotation of the repository, we have iden-
tified a number of system concerns of different categories.
By concern categories, we mean groups of related system
concerns representing similar matters of stakeholders’ inter-
ests. Table 1 depicts six concern categories. For each con-
cern category, we give two example concerns. For instance,
from the viewpoint of system components, one can identify
a concern standing for application management and another
representing application trampoline. Each of these system
concerns is represented using a separate aspectual pattern.
The name of the pattern is given next to the concern defi-
nition. In addition, the table gives the artifact types where
each concern is represented.

In order to illustrate our concern-based query language,
Table 2 shows four example concern queries based on the
concerns (patterns) identified in Table 1. The first query
stands for concern slicing. It is for excluding all repository
elements that address the authentication concern (Auth)
and are at the same time related to system security (Sec).
The search results of this query are themselves returned as
a pattern (NonSecAuth). The latter pattern is then used
in the second query to narrow down the search results fur-
ther to those elements that are also addressing application
trampoline. The third query gives an example of a concern
merging operation and the fourth shows a second illustration
of the merging operation.

84

Table 2: Example concern queries

Stakeholder interest
Concern

expression

Are there any parts in authentica-
tion that are not related to secu-
rity?

NonSecAuth =
Auth - Sec

Are any of the parts above in
the application trampoline compo-
nent?

NonSecAuth
& AppTram

Show me the application manage-
ment component in the context of
the MVC architecture!

MVC + AppMan

What are the parts of the platform
that are relevant for creating online
help for an application?

FeatSpec & On-
lineHelp

In some situations, the user might not be interested in
viewing all the artifact types corresponding to her concern
query. For instance, designers may prefer to analyze system
repositories based on detailed design diagrams. In the con-
text of tool support, it is useful to allow users to refine the
query results based on their desired artifact types.

6. DISCUSSION
In this paper, we have argued that in the current trend of

software engineering, mining mechanisms are driven by the
heterogeneous and fragmented nature of software systems.
Such a viewpoint has already been taken in several research
works in the field of mining software repositories [4, 16].
Supporting such a viewpoint, we have presented a concep-
tual framework for a concern-oriented query language. Our
approach differs from other querying models, such as the
one presented in [12], by treating system concerns as first
class citizens. The concerns, grouped according to various
concern categories, address different matters of stakeholders’
interests.

Concern-oriented mining has been widely discussed in the
field of aspect-oriented software development (AOSD [9])
and is generally referred to as concern elaboration. There
are many tools that can be used for concern elaboration.
These include standalone search tools, browsers integrated
in IDEs, and compilers. A typical scenario, using these tools,
is to run a query over a model to retrieve the model elements
addressing a certain concern. Similar to our approach, the
queries could be refined once the results are evaluated.

In [14], three concern elaboration tools have been evalu-
ated namely, AspectBrowser [1], AMT [2], and FEAT [8].
These tools differ in two major ways: how programs models
are represented before being elaborated and how search re-
sults are presented to the user. Instead of relying solely on
repository data for extracting the required information, our
approach is based on mining a search space that is external
to the repository. In our methodology, the search space is
not deduced from the repository but rather superimposed on
the repository data. This is in contrast to other approaches
(i.e. reverse engineering [3]) that are based on building high

level representations of low level system data [5]. It can be
argued that the two approaches are in fact complementary.

As an implementation scheme, we have used a role-based
pattern mechanism for representing system concerns and
formulating the queries. Using patterns we could success-
fully annotate a repository taken from the industry and we
could conveniently express our search queries. As an exper-
imental environment for concern-based mining, we have ex-
ploited an existing pattern-driven development environment
known as MADE. The MADE environment comes with var-
ious capabilities for concern-based annotation of software
repositories. However, search mechanisms need still to be
implemented in the tool.

7. ACKNOWLEDGMENTS
This research has been financially supported by the Na-

tional Technology Agency of Finland (project Inari), Nokia,
Plenware Group, TietoEnator, and John Deere.

8. REFERENCES
[1] Aspect Browser WWW site. Available at

http://www-cse.ucsd.edu/users/wgg/Software/AB/,
2006.

[2] Aspect Mining Tool (AMT) WWW site. Available at
http://www.cs.ubc.ca/~jan/amt/, 2006.

[3] E. Chikofsky and J. Cross. Reverse engineering and
design recovery: A taxonomy. IEEE Software,
7(1):13–17, 1990.

[4] A. Dekhtyar, J. H. Hayes, and T. Menzies. Text is
software too. In Proc. MSR 2004, pages 22–26,
Edinburgh, Scotland, UK, 2004.

[5] S. Demeyer, S. Tichelaar, and S. Ducasse. Famix 2.1 -
the famoos information exchange model. Technical
report, University of Berne, 2001.

[6] Eclipse WWW site. Available at
http://www.eclipse.org, 2006.

[7] H. B. Enderton. Elements of Set Theory. Academic
Press, 1977.

[8] Feature Exploration Tool (FEAT) WWW site.
Available at
http://www.cs.ubc.ca/labs/spl/projects/feat/,
2006.

[9] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit,
editors. Aspect-Oriented Software Development.
Addison-Wesley, 2004.

[10] I. Hammouda. A tool infrastructure for model-driven
development using aspectual patterns. In S. Beydeda,
M. Book, and V. Gruhn, editors, Model-driven

Software Development - Volume II of Research and

Practice in Software Engineering, pages 139–178.
Springer, 2005.

[11] I. Hammouda, J. Koskinen, M. Pussinen, M. Katara,
and T. Mikkonen. Adaptable concern-based
framework specialization in UML. In Proc. ASE 2004,
pages 78–87, Linz, Austria, 2004.

[12] A. Hindle and D. M. German. SCQL: a formal model
and a query language for source control repositories.
In Proc. MSR 2005, pages 100–104, Saint Louis,
Missouri, USA, 2005.

[13] G. E. Krasner and S. T. Pope. A description of the
model-view-controller user interface paradigm in the

85

smalltalk-80 system. Journal of Object Oriented

Programming, 1(3):26–49, 1988.

[14] G. Murphy, W. Griswold, M. Robillard,
J. Hannemann, and W. Wesley Leong. Design
recommendations for concern elaboration tools. In
R. E. Filman, T. Elrad, S. Clarke, and M. Akşit,
editors, Aspect-Oriented Software Development, pages
507–530. Addison-Wesley, 2004.

[15] Rational ClearCase WWW site. Available at http:

//www-306.ibm.com/software/awdtools/clearcase/,
2006.

[16] G. Robles and J. M. Gonzalez-Barahona. Developer
identification methods for integrated data from
various sources. In Proc. MSR 2005, pages 106–110,
Saint Louis, Missouri, USA, 2005.

[17] Unified Modeling Language WWW site. Available at
http://www.uml.org/, 2006.

86

Software Engineering Applications of Logic File System

Application to Automated Multi-Criteria Indexation of Software Components

Benjamin Sigonneau
IRISA/Université de Rennes 1

Rennes, France
benjamin.sigonneau@irisa.fr

Olivier Ridoux
IRISA/Université de Rennes 1

Rennes, France
ridoux@irisa.fr

ABSTRACT
Logic information systems use formal concept analysis in a novel
way to manage information. A file system implementation has
been designed under the name of Logic file system. It offers a
flexible management of non-hierarchical data. We present several
applications of Logic file system to software engineering: multi-
criteria indexation of software components, multi-concern brows-
ing of source files, and bug finding in test traces.

We detail multi-criteria indexing of software components. Three
independent indexing frameworks are developed and merged in a
single multi-criteria framework. The three indexing frameworks
capture formal criteria like type isomorphisms and inheritance re-
lations, semi-formal criteria like naming conventions, and informal
criteria like keywords of comments. We show how the logical ori-
entation of Logic file system helps in capturing all these criteria in
a single framework.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environment

General Terms
Design

Keywords
Logic information system, Software components

1. INTRODUCTION
Software engineering manages many kinds of documents that are

related in many ways; it is the place for cross-cutting concerns and
multi-view schemata. However, this rich network of relationships
is often flattened on a single hierarchy. This is sometimes called
the “tyranny of the dominant decomposition” [19]:

• The Java class browser is organized after the inheritance hi-
erarchy; this makes it nearly impossible to search a method
using different criteria (e.g. search for a method that returns

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

a string, or search for a method that raises a particular excep-
tion).

• A standard source file displays the linear hierarchy of a text.
One cannot claim to organize a source file using several crite-
ria at the same time. One criterium must dominate the others.

• Object orientation brings types to the top of the hierarchy, so
examining or creating a type is easy. At the opposite extreme,
procedure orientation brings routines to the top of the hier-
archy, so that examining or creating what concerns a type is
scattered across source files, but examining or creating rou-
tines is easy.

• Sometimes, a hierarchy is imposed by a programming lan-
guage. See for instance the layout of Java packages on direc-
tories.

• Even when it is electronic and enriched with navigation links,
documentation is often thought as a rigid document, in which
an almost arbitrary priority of concerns concentrates favoured
concerns in a few sections, and discards unfavoured concerns
across the whole document.

In all these situations, finding a particular piece of information re-
quires either luck or erudition. We contend that neither luck nor
erudition is a necessary practice for robust software engineering.

We feel that the very heart of this problem lies in the fact that
traditionnal information systems (e.g. hierachies or databases) fail
to organize this data in an efficient way that would be convenient
to the user, and artificially enforce the use of a dominant decompo-
sition. We propose to use a new powerful organization framework,
called Logic Information System (LIS), to manage software engi-
neering artifacts.

In Section 2 we will present what a logic information system is
and a file system implementation of a LIS. Then we will present in
Section 3 the outlines of three experiments of software engineering
applications based on the LIS file system. Finally, we will present
in more details the retrieval of Java methods using the LIS file sys-
tem (see Section 4).

2. LOGIC INFORMATION SYSTEMS

Hierarchical organizations are rigid because only one path leads
to every single object. Sometimes, this rigidity is relaxed by intro-
ducing links, but this does not scale well because navigation does
not work well with links, and generally nothing prevents from cre-
ating dangling links. In short, links are an afterthought1. The good
news about hierarchical organization is that it makes a notion of
place very intuitive (every node in the hierarchy is a place), and it
1Even in cases where links are not an afterthought, e.g. in a web site, the
same rigidity arises since only a fixed set of paths leads to every object.

87

makes navigation progressive. Indeed, if we consider the hierar-
chy of a UNIX file system, the answer to an ls in a place (e.g. a
directory) is the set of objects that inhabit the place, and a set of
sub-places (e.g. subdirectories). It is only when forced that a hier-
archical organization dumps all its content (say, using ls -R in a
UNIX file system).

A truly different organization is the boolean organization, where
objects are associated with attributes, and the answer to a query is
the set of objects that are associated to some attributes, as can be
seen in Google. It is very flexible because attributes can be queried
in any order and any combination. However, it is not progressive
at all because it dumps all objects that answer the query without
organizing them, and it gives no hints on how the query could be
refined. So, there is no notion of place, hence no real navigation.

The goal of logic information systems (LIS, for short) is to get
the best of both worlds: flexibility in queries, a clear notion of
place, and navigation.

2.1 Formal Framework
This section presents the outline of the theory of LIS. Full details

can be found in [4].
The contents of a LIS is a set of objects, O, and a mapping d

(for description) from objects to properties. Objects can be files,
like photos and source files, or parts of files, like procedures in a
source file. Properties are expressed as formulas of some logic L.
Very little is demanded on the logic; its entailment relation (written
|= in the sequel) must handle a form of conjunction and disjunction
(written ∧ and ∨), have a tautology (written >), and be monotonic
and decidable. Since the LIS theory was inspired by formal con-
cept analysis (FCA [6]), the object 7→ property mapping is called
a context. The logic L used for expressing properties is a generic
parameter of the theory. In practice, well-known logics like propo-
sition logic are not used alone; very specific logics, e.g. for com-
paring dates, are much more useful. A logic of containment of sets
of keywords is often good enough. In this case, LIS comes very
close to standard FCA. In standard FCA a context may be infinite,
but in LIS it will always be finite.

For convenience, we will say that “an object entails a property p”
if its description entails p. The theory of FCA defines the intention
of a set of objects as the most specific property that describes them
all. Dually, the extension of a property is the set of all objects that
entail the property.

D 1 (I).
int(O) =

∨
o∈O d(o) where O ⊆ O

ext(p) = {o ∈ O | d(o) |= p} where p ∈ L

Clearly, intention and extension map set of objects to properties and
back.

In fact, ext◦ int and int◦ext are called closures; they are normal-
izing operators. Note that the normal form of a set of objects or of
a property depends on the context. In general, not every subset of
O is normal, and there are much less normal subsets than there are
subsets. Similarly, not every property is normal.

This shows that pairs 〈ext(p), int(ext(p))〉 and 〈ext(int(O)), int(O)〉
are special. They are extension-intention pairs in which the inten-
tion is the intention of the extension, and the extension is the ex-
tension of the intention. FCA theory calls these pairs concepts.
Concepts can be ordered: a concept is smaller than another if its
extension is contained in the other, or equivalently if its intention
entails the other. In LIS, there are always finitely many concepts.

D 2 (). A pair 〈e, i〉 is a concept iff ext(i) = e
and int(e) = i. A concept 〈e, i〉 is smaller than or equal to a concept
〈e′, i′〉, 〈e, i〉 ≤ 〈e′, i′〉, iff e ⊆ e′ (or equivalently i |= i′).

The main result of FCA is that given a context, the set of all its
concepts ordered by ≤ forms a complete lattice: the concept lat-
tice. Furthermore, the original context can be reconstructed from
the concept lattice. In some sense, the context is the concrete data-
structure, and the concept lattice is the information it contains. In
LIS words, the contents of a LIS is a context, but LIS shows con-
cepts as places, and the ≤ relation as a subdirectory relation.
〈ext(int({o})), int({o})〉 is always a concept, but the converse is not

true, simply because there may be more concepts than objects. This
concept, written conceptof (o) in the sequel, is said to be labelled
by o. Similarly, 〈ext(p), int(ext(p))〉 is always a concept, but it de-
pends on the logic whether there are more concepts than formulas
(modulo entailment). It is written conceptof (p), and we say that p
labels this concept. The practical interest of this notion is that {o}
is usually much smaller than ext(int(o)), and p is also usually much
simpler that int(ext(p)).

Finally, one says that properties that label the same concept are
contextually equivalent. This shows three levels of information in
a LIS:

1. Absolute truth is represented as the logic of properties. At
this level, a ∧ b |= a or fish |= vertebrate whatever happens
in the context. It is up to the administrator of a LIS to choose
what absolute truth he wants to represent.

2. Facts are represented in the context. New facts may be added,
old facts may be deleted.

3. Concepts, and contextual entailment, represent contingent
truth, i.e. conclusions that may not be valid in another con-
text.

In his logic modeling of information systems querying, Van Ri-
jsbergen [20] proposed that the answer to a query be its exten-
sion. However, an extension may be large, especially if the query
is vague. So, LIS takes another stand-point [4]:

D 3 (). The answer to a query
q is dirs(q) ∪ files(q) where:

dirs(q) = a finite set P such that

∀c < conceptof (q).
[
¬∃c′ < conceptof (q).c < c′

⇒ ∃p ∈ P.conceptof (q ∧ p) = c
files(q) = {o | conceptof (o) = conceptof (q)}

The files(q) are the objects at place q, i.e. the files in directory
q, whereas the dirs(q) are properties that reach the greatest lower
concepts, i.e. the subdirectories of q. Elements of dirs(q) are also
called increments to avoid the connotation of a file system, and to
reflect their use in incremental navigation.

Note that the answer to a query contains other queries (see dirs(q)).
This is analogous to a dialog between a customer (C) and a shop
assistant (SA):

C: I want to buy flowers! What do you have?
SA: Do you have any idea of the color, kind of flower or size of

bouquet?
C: I want a big bouquet! What color do you have?

SA: Red, white or yellow.
. . .

The user never has to guess a formula; he only has to select a
formula among the dirs(q) and keep on repeating the process until
he finds the object he was looking for. So, a user may even navigate
in a context with a logic he does not know, provided he understands
the formula. In other words, a passive knowledge of the logic is
enough. However, if he has a deeper knowledge of the logic, he
can go faster by setting his initial query q directly to a formula that
caracterizes the desired object.

88

To sum it up, a LIS behaves like a schemaless database, its orga-
nization structure being computed dynamically from the logical de-
scriptions of the objects. In a database system as in a LIS, queries
are intentional. The most striking difference between a database
system and a LIS is the nature of the answer. Whereas it is exten-
sional in a database system, i.e. objects, in a LIS the answer to a
query is also intentional, i.e. expressed in the same language as
queries. Therefore, the search can be progressive through an itera-
tion process: ask for a query, pick up an answer to complement the
query, etc.

2.2 A LIS File System — LISFS
LIS is a candidate for replacing the traditional hierarchical orga-

nization when it does not fit well the needs of an application. In
fact, a hierarchical organization is often used as a default solution,
despite its lack of flexibility. Many applications contain their own
browser in order to circumvent the inadequacy of an underlying hi-
erarchical store. Having a LIS as a file system would provide an
adequate solution that is ready for use by different applications. As
a bonus, this would help making these applications communicate
through the file system.

So, we have studied an implementation of LIS as a file system
in order to offer a generic service that could be used in already ex-
isting applications [13]. This implementation, named LISFS, uses
as much as possible database and file system techniques. It is still
a prototype but its current state shows acceptable performance for
interactive usage with more than 100,000 files.

In modern operating systems, a file system is an implementation
of some file system interface (e.g. VFS for Linux, virtual file sys-
tem). Although a file system is best presented at this level, this
would reveal technical details that are irrelevant in this article. So,
we choose to present LISFS at the shell level. We have not written
a new shell; we simply run an existing shell on LISFS.

In LISFS, a fragment of propositional logic with valued attributes
is proposed as a kernel logic. To achieve this, paths are considered
as formulas; a path is a conjunction of atomic properties (direc-
tories)2, i.e. the UNIX path separator / is to be read as a logic
conjunction ∧. This gives a new semantics to old shell commands.

E 1 (U LISFS).
[1] mkdir a; mkdir b; mkdir c; mkdir d

[2] touch a/b/d/fabd; touch d/c/b/fbcd; touch d/b/fbd

[3] cd b; ls

a/ c/ fbd

[4] cd a; ls

fabd

Under LISFS, the mkdir command creates axioms. So at Line 1,
four directories are created at the root (pwd = >), i.e. axioms
a |= >, etc. are declared. Then, three files are created at Line 2 with
the standard UNIX command touch: fabd has property a∧ b∧ d,
fbcd has property b ∧ c ∧ d, and fbd has property b ∧ d.

Starting from the root, command cd is used to go into subdirec-
tory b at Line 3. Adopting the LIS point of view, this reads: property
b is selected. pwd becomes > ∧ b = b.

This directory contains two subdirectories, a/ and c/, and a file
fbd. Though b ∧ d is not equivalent to b, it is contextually equiva-
lent. At Line 4, property a/ is selected, setting pwd to a ∧ b. Only
one file remains, namely fabd.

Moreover, LISFS can be extended by using a plugin mechanism.
2In fact, a path is a conjunction of formulas that can be atomic, dis-
junctive (e.g. small|large), conjunctive (e.g. black&blue), or negative
(e.g. !costly). The symbol & is only necessary for conjunctions that are
nested in disjunctions or negations

In this way, LISFS maintains the genericity of the design of LIS.
This mechanism also handles to kinds of plugins : logics are used
to attach new specific logics to some properties (e.g. interval log-
ics or date logics) and transducers are programs that can extract
properties from file contents as soon as a file is updated. So, the de-
scription of a file can be made of both intrinsic properties computed
and maintained by transducers, and extrinsic properties maintained
by the user.

Another very important feature of LISFS is that it may operate
at two levels. At the first level, called interfile, objects are files.
At the second level, called intrafile, objects are parts of files [14].
The first level is the standard operation level of file systems. The
second level permits to treat a file as a directory and explore its con-
stituents. The extension of the pwd is always a selection of parts of
the original file. In every directory, it is presented as the unique in-
habitant of directory pwd. At the intra-file level, the extension can
be considered as a slice or a view of the original file for some prop-
erty. Moreover, these views can be edited; the modifications will
be retropropagated to the original file, and to every other view that
shares something with this one. This unifies access methods inter-
and intrafiles, and it makes tools designed to browse a collection of
files suitable to browse the components of a file.

2.3 Applications
We have experimented with applications ranging from personal

information systems for managing recipes, agenda, music files, pho-
tos, one’s homedir, to software engineering tools and office applica-
tions for managing bibliographies and emails. We are also currently
developing a geographic information system prototype.

3. SOFTWARE APPLICATIONS OF LIS

3.1 Indexing Software Components
Component retrieval is a key issue for the hability to reuse com-

ponents. Prieto-Dı́az explains that this implies classifying compo-
nents, and that it can be done in two ways: hierarchical or faceted
classification [15]. He further explains that faceted classifications
are more suitable for classifying software components, though they
require the intervention of an expert, and they do not work well
for heterogenous collections. The requirement for an expert can be
avoided if facets are extracted automatically. Furthermore, LIS are
designed for coping with heterogenous data. So, we propose to use
LISFS as a storage device for a component manager.

Designing such an application amounts to designing a logic for
representing component properties, and the structure of the context.
The attachment of a property to every single component is auto-
mated by a transducer, and LISFS supports the run-time retrieval
system. This approach can be transposed to any kind of software
components like Web services [12, 9] or COTS [17]. Section 4
presents an application of this approach to Java methods.

3.2 Browsing Source Trees and Source Files
LISFS can be used to browse source trees and sources files.
Regarding source trees, LISFS has been used to manage the

Linux kernel source tree. In this case, intrinsic properties of the
files are the names of the functions they contain (as extracted with
the ctags command). The files also contain extrinsic properties that
correspond to their path in the original source tree (e.g. driver,
fs, include, etc.).

With such a huge source tree, one would like to classify the files
according to his current needs: by file type (includes, C files, text
documentation, . . .), by architecture (x86, PPC, . . .), by module
(drivers, virtual memory manager, . . .) and so on. However, the

89

organization of the Linux kernel source tree suffers from the limita-
tions of hierarchical file systems and therefore forces the developer
into using a fixed organization scheme (currently, by type, then by
module, then by architecture). Some directories therefore appear in
different places (e.g. there are 4 sound directories), the organiza-
tion is not always coherent and is hard to understand. One answer
to these problems is to use specific tools, such as LXR [10], a cross-
referencing tool for relatively large code repositories.

Another solution is to use LISFS, with which these problems
become irrelevant. The classification scheme is not fixed any-
more, and the user can select the set of files dealing with mem-
ory handling, should they be includes, C files or documentation
with cd mm. Or he could have retrieved every include files with the
same ease: cd kind:header, focused on a particular architecture:
cd architecture:ppc. Of course, those queries can be issued in
any order, and in any place ranging from the root of the source tree
to the deepest subdirectory where it is still relevant.

Once a source file is located in the tree, the programmer is able to
work on it. However, a source code contains scattered information,
such as debugging statements, comments, assertions, etc. As rec-
ognized by Aspect-Oriented Programming [8], this cross-cutting
information is generally not handled in an easy way because it is
scattered in the program. With LISFS intra-file mode, it becomes
easy to manage such cross-cutting concerns.

To do so, the user has to input the special query cd parts; then,
the file is diplayed along with several subdirectories, each of them
leading to a partial view of the initial file. For this to work under
LISFS, plugins need to be designed, one for each kind of program-
ming languages. Such plugins have been developed for several lan-
guages, among which C source files (used when working on the
Linux kernel sources) and OCaml source files (used when working
on LISFS source code).

Therefore, we are able to ask for a partial view of source files
written in those languages. E.g., we can ask for a view of a source
file with comments and without debugging statements by issuing
the query cd comment|(!aspect:debug). The result is a place
that holds a copy of the file where the non-selected parts (here, the
debug statements) are hidden. Any change operated on this partial
view will be propagated in the original file. Moreover, the result of
an ls command shows other subdirectories, i.e. it prints out how to
get smaller views of the source file. In the case of C files, it shows
we can focus on a particular function:, or make a slice regarding
a particular variable (var:), and so on.

3.3 Analysis of Program Traces
LISFS can be used to explore execution traces of programs.
In a first approach, we focus on Prolog program execution traces.

Every event of a trace is described by a text line that mentions the
values of a set of attributes (event number, port, predicate, goal,
depth) reflecting Byrd’s box model [1]. Using LISFS intrafile level,
a trace can form a context where events are objects to be browsed.
For instance, cd depth:>5 gives a partial view of the trace show-
ing only goals whose depth is greater than 5.

Another approach is to query a pool of different execution traces
of the same program corresponding to different test cases, or of
different execution traces of different mutants on the same test case.
In this case, traces are the objects of the context. They are described
by test verdicts (pass or fail), and the numbers of the executed lines,
or other trace information. The problem of locating bugs using
traces and test verdicts is not new [7], but it was recently rephrased
in the context of data-mining [2]. The advantage is that data-mining
them gives well-known indicators (e.g. support, confidence, lift)
that can be used in a more principled way than the ad hoc indicators

used by Jones et al.
We propose to use LISFS to crosscheck the traces so as to lo-

cate errors in the code. A further advantage of using LIS instead of
the standard association rules method is that LIS can accommodate
a large range of logical descriptions whereas association rules are
limited to attribute-based contexts. So, we expect to be able to use
other trace descriptors than merely line numbers. Preliminary ex-
periments are currently being lead on C programs execution traces.

4. SOFTWARE COMPONENT INDEXING
We present more details on the application for indexing software

components. In this section, components are Java methods.

4.1 A Logic for Classifying Java Methods
We classify facets as formal, semi-formal, and informal. We did

not try to implement every possible facet, but we decided to im-
plement one in each kind of facets. This shows how very different
kinds of descriptions combine in a single property, and are used in
navigation.

Formal facets are formally related to the semantics of compo-
nents; we have chosen types because they are already given in the
source, though any static property would do. Concerning type, we
have developed an entailment relation which combines type iso-
morphisms [3] with the inheritance relation. This is a contribution
in itself since prior attempts to do so in the higher-order type case
lead to a contradiction [18], while we show that the first-order type
case works well. From a LIS perspective this also shows how very
specific logics can be developed to fit a given purpose.

Semi-formal facets are only loosely connected to the semantics;
we have chosen methods identifiers, and especially the conven-
tion that helps splitting an identifier into a phrase. For instance,
getValue is usually meant to be read as “get value”. This reading
is not connected to the semantics because nothing forces a method
getValue to get anything, and vice versa. However, identifiers are
formally connected to the semantics by the store; a spelling mistake
is seen by the compiler. In a given context, whatever getValue
means is formally defined.

On the opposite, we also developed an informal facet based on
comments; they are not formally connected to the semantics at all,
and a spelling mistake is not seen by the compiler.

We propose a type entailment relation that is based on inheri-
tance, written t ≤inh t′ iff t inherits from t′, and on type isomor-
phism, written t ∼T t′ iff t is isomorphic to t′ wrt. theory T . We
consider Java as a first-order object-oriented language in which the
only polymorphism comes from inheritance; there is no polymor-
phism à la ML. The language of Java types is abstracted as follows:

D 4 (T).
Type F Arg→ Res
Arg F Arg × Arg | class
Res F class

We write x : t iff x has type t.

In order to use types as descriptions of objects in LIS, hence as
queries, we have to define what is the entailment relation of types
considered as a logic. First, we show intuitively that the arrow type
must be contravariant for the entailment relation.

D 5 (C). Let ≤ be a partial order de-
fined on types as in Definition 4. Relation ≤ is said to be con-
travariant iff

∀σ,σ′, τ, τ′, σ′ ≤ σ, τ ≤ τ′ implies σ→ τ ≤ σ′ → τ′

90

Indeed, any entailment relation can be considered as a par-
tial order. Moreover, type entailment must extend the inheri-
tance relation, i.e. t ≤inh t′ =⇒ t |= t′, because it is interpreted as
t ≤inh t′ =⇒ ext(t) ⊆ ext(t′). For instance, Number ≤inh Object

means that every Number is an Object, but the opposite is false.
Finally, the arrow type must be considered as contravariant for the
inheritance relation, hence it must be considered as contravariant
for the entailment relation too because the latter extends the for-
mer. Why must the arrow type be considered as contravariant for
the inheritance relation? Let us take an example. Assume a user
is looking for a method that takes a Button as a parameter and
returns a Container. His query will be Button → Container.
Every method that accepts a super-type of Button, plus supple-
mentary parameters, and that returns a subtype of Container is a
correct answer. This shows that parameters and results play oppo-
site roles. In fact, type entailment means “can replace the other,
and still be type-checked”.

When taken literally, types are not good search keys because
two types may differ though semantically neutral transformations
would make them identical. For instance, the order of parameters
should not matter because a parameter permutation makes types
identical. This is called type isomorphism, and has been recognized
for long as the key to use types as queries for searching software
components [16, 18].

D 6 (T). A type t is isomorphic to a
type t′, written t ∼ t′, iff

∃ f : t → t′ ∃g : t′ → t [g ◦ f = Idt ∧ f ◦ g = Idt′]
Functions f and g are called the witnesses of the isomorphism.
They are the semantically neutral operations that make two types
equivalent.

It is convenient to present type isomorphisms as equivalence re-
lations wrt. a set of axioms. Every set of axioms generates an
isomorphism. For instance, axiom ∼exch (exchange) says that t × t′

and t′ × t must be considered as isomorphic, and axiom ∼curry (cur-
ryfication) says that t → (u→ v) and (t × u) → v are isomorphic.
Isomorphism axioms generate equivalence classes that make a type
the representent of each type of its class. Di Cosmo has devel-
oped a complete theory of isomorphism axioms [3], however ∼exch

is the only axiom that is relevant to our type language. Other ax-
ioms, like ∼curry, deal with characteristics of other type systems like
higher-order.

The entailment relation can also be presented as a set of ax-
ioms. We already know the |=inh axiom, which says that entail-
ment extends inheritance. A second axiom is |=drop, which says that
(t × u)→ v |= t → v. Other axioms have been developed in the lit-
erature, but they do not apply to our type language; e.g., |=inst which
says ∀α.t |= t[α← t′] applies to polymorphism à la ML.

Finally, an entailment relation can be built by combining isomor-
phism axioms, hence considering equivalent classes of types, and
entailment axioms. However, entailment axioms may generate new
equivalence classes, e.g. if t |= t′ and t′ |= t. It may even make the
entire set of types collapse into too few equivalent classes. This is
what happens when isomorphism axiom ∼curry and entailment ax-
ioms |=drop and |=inst are combined [18]. So, it is important to study
what happens with axioms that apply to our type language: ∼exch,
|=drop and |=inh. In fact, we have proven that every equivalence class
induced by ∼exch, |=drop and |=inh is already induced by ∼exch.

T 1 (S ∼exch,|=drop |=inh).

∀t, t′

 t |= t′ wrt. ∼exch, |=drop, and |=inh

∧

t′ |= t wrt. ∼exch, |=drop, and |=inh

=⇒ t ∼ t′ wrt. ∼exch

To conclude, we choose as a logic for representing types the en-
tailment relation induced by axioms ∼exch, |=drop and |=inh.

The entailment relation for keywords is much simpler. Semi-
formal and informal properties are sets of keywords, and we say
that s |= s′ iff s ⊃ s′.

4.2 Implementation
The previous section has shown the logical engineering one must

engage into to develop a formal method. It is not related to LISFS.
This section will show how LISFS helps in implementing the re-
sulting entailment relation at almost no cost.

We could have developed a logic plugin for type entailment, but
LISFS allows an alternative solution. The native solver of LISFS
already implements a fragment of propositional logic that contains
the exchange rule, A∧B

B∧A , and the weakening rule, A∧B
A . These rules

correspond to axioms ∼exch and |=drop at the propositional level. So,
we propose to represent types in such a way that exchange and
weakening will implement axioms ∼exch and |=drop.

Contravariance tells that types behave differently according to
their context. We call positive the types of the right end of →,
and negative the types of the left end. Similarly, exception types
are called positive, because they behave as results, and class types
are called negative, because they behave as parameters. So, we
represent complex types as conjunctions of signed base types.

D 7 (E). We note d.e
the encoding of types into conjunctions of signed base types. Re-
member that − − t = +t = t.

dt → t′e = −dte ∧ dt′e
dt × t′e = dte ∧ dt′e
dbase typee = base type

Using encoding d.e, the implementation of axioms ∼exch and |=drop

comes for free. What remains to implement is the |=inh axiom.
It is simply done by using LISFS command mkdir which imple-
ments user-defined axioms (see Section 2.2). Every time a dec-
laration says that a class A inherits from a class B, symbols in-A
and out-A are created for representing −A and +A, and a com-
mand mkdir out-B/out-A creates the axiom +A |= +B. Once all
the inheritors of a class B are known, say A1, . . . , An, a command
mkdir in-A1/.../in-An/in-B creates the axioms −B |= −A1,
. . . , −B |= −An.

All this implements the desired entailment relation without hav-
ing to develop a theorem prover.

4.3 Experiments
We have experimented our Java method browser on existing Java

packages. Consider, for instance, the AWT package. It consists
of about 5,200 methods. The context builder passes through the
package and creates its lines and columns in two passes: type first,
then identifiers and comments. Figure 1 shows the shape of the
actual AWT context. Indeed, every symbol has an internal identifier
in LISFS (its inode), and the figure simply shows the context as a
matrix. The figure can be interpreted as follows.

Objects, i.e. AWT methods, are on the horizontal axis, and at-
tributes on the vertical one. Object numbers are introduced in the
order of method declarations in the program. Types are analyzed
before identifiers and comments, so they are given the low attribute
numbers (below ≈1,700 on the figure). Types are numbered during
a traversal of the inheritance graph. Once this is done, identifiers
and comments are read in the source order, so they are given the
highest attribute numbers. The figure therefore displays a type area,
and a keyword area. The type area is strongly structured by lines

91

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1000 2000 3000 4000 5000 6000

A
ttr

ib
ut

es

Objects

Figure 1: AWT formal context

and columns. Lines show types that are shared by many objects,
whereas columns show types that come together in a single object.
Columns are mainly an effect of inheritance. The keyword area is
the triangular part. It shows that keywords that appear first are also
frequent keywords since the triangle basis is darker than its top.
The keyword area shows no particular structure. LIS and LISFS
propose a rational navigation principle in this kind of structure.

Let us assume that a user looks for a method that takes a string as
a parameter. The following simple commands help analyzing the
situation.
[1] cd /mnt/lisfs/component-manager/
[2] cd in-java.lang.String
[3] ls | wc -l

444
[4] ls .ext | wc -l

356

We present the queries as shell commands, but one should rather
imagine them as buttons of a graphical interface. The last two com-
mands show that there are 356 methods that takes a string as a pa-
rameter, and that there at 444 ways to make the user demand more
precise. So, the user had better think a little on his own, and he
remembers that what he wants to do is related to MIME types.
[5] cd ’ident:mime|comment:mime’
[6] ls

1 in-java.awt.datatransfer.MimeTypeParseException/
2 in-java.awt.datatransfer.MimeTypeParameterList/
3 static/
3 in-java.awt.datatransfer.SystemFlavorMap/
3 in-java.awt.datatransfer.DataFlavor/
4 in-java.awt.datatransfer.MimeType/
5 by-exception/
7 out/
11 comment/
12 ident/
12 method/
12 by_class/
12 access_control/

Of the 5,200 methods of the initial context, only 12 are possible
answers, and there are few relevant increments. So, the user can
study them and recall that the command he is looking for is not
static.
[7] cd ’!static’
[8] cd .ext
[9] ls

MimeTypeParameterList MimeTypeParseException
isMimeTypeEqual normalizeMimeType
normalizeMimeTypeParameter parse

[10] cat normalizeMimeType
Called for each MIME type string to [...]

The user has recognized the name normalizeMimeType and
checked its summary. Overall, the navigation took 3 steps that
invoked the three kinds of properties. Each kind of property de-
termines a classification of Java methods in itself, but it is LIS that
combines them all in a single classification.

Former propositions by Rittri, Runciman, and Di Cosmo de-
scribed classifications based on type isomorphism, but they lacked
proper ways to navigate in possible answers. Furthermore, in their
propositions the user is to submit a nearly complete expected type.
In ours, he only submits the part that seems relevant.

Another possible classification of Java methods is by using the
inheritance graph of the classes they belong to. This is the only
classification used in the official Java documentation. Assume the
developer of a graphical interface looks for a method that would
return the name of a window. He may start by exploring the class
Window.
[11] cd /mnt/lisfs/component-manager/class-java.awt.Window
[12] ls

3 static/
11 by_exception/
24 final/
255 class-java.awt.TextField/
255 class-java.awt.TextArea/
255 class-java.awt.Scrollbar/
255 class-java.awt.List/
255 class-java.awt.Label/
255 class-java.awt.Choice/
255 class-java.awt.Checkbox/
255 class-java.awt.Canvas/
255 class-java.awt.Button/
328 comment/
361 class-java.awt.ScrollPane/
361 class-java.awt.Panel/
361 class-java.awt.Container/
438 ident/
438 method/
438 by_type/
438 access_control/

[13] ls .ext | wc -l
438

LISFS computes 20 increments in a few seconds. They concern
438 AWT methods. Since he is looking for window names, the
developer searches for keyword “name”.
[14] cd ident:name
[15] ls

1 ident:set/
1 ident:get/
2 ident:construct/
2 ident:component/
3 class-java.awt.TextField/
3 class-java.awt.TextArea/
3 class-java.awt.Scrollbar/
3 class-java.awt.ScrollPane/
3 class-java.awt.Panel/
3 class-java.awt.List/
3 class-java.awt.Label/
3 class-java.awt.Container/
3 class-java.awt.Choice/
3 class-java.awt.Checkbox/
3 class-java.awt.Canvas/
3 class-java.awt.Button/
4 comment/
4 by_type/
4 access_control/

Keyword “get” seems relevant. A quick look will confirm it.
[16] cd ident:get
[17] ls

getName
[18] cat .ext/getName

Gets the name of the component.

92

These experiments confirm the feasibility and interest of com-
bining a wide range of properties. The user submits queries using
properties that are relevant for him, and LIS return relevant incre-
ments. The navigation may start by submitting type information
and continue using keywords; the user is not bound to using a sin-
gle classification.

5. CONCLUSION
LIS and LISFS form a flexible and powerful framework for de-

veloping software engineering tools. We have already made experi-
ments in source browsing, component browsing, and trace analysis
for bug finding. As it includes basic logic services, LISFS can also
help in the logical engineering of an application.

We have also presented the design of a component browsing tool
that we have demonstrated on real Java packages.

In its current state, LISFS can only handle contexts in which
properties are attached to one object at a time; in other words, prop-
erties are unary predicates. We are developing a variant of LIS in
which properties can be attached to vectors of objects [5]. So doing,
properties are n-ary predicates. This is especially important in soft-
ware engineering applications because they are rich in inter-objects
relations, e.g. calls, imports, compiles-to, inherits-from, etc. These
relations can be simulated with unary predicates, but it is inconve-
nient. For instance, maintaining an inverse relation is error-prone.

The concept lattice is based on strict containment, so that navi-
gation increments are always relevant. However, it could be useful
to consider qualified containment like 90% of concept c belongs to
concept c′. This leads to introducing association rules and data-
mining operations in LIS. We believe it is useful in exploratory
applications like fault-finding [2].

LIS and LISFS propose a navigation metaphor based on the no-
tion of place through the use of increments; in particular the con-
cept lattice is never actually built. Other authors have proposed
to navigate graphically in the concept lattice. We believe this is
impracticable because there are too many concepts, even in not
so large contexts. For instance, the AWT context produces about
135,000 concepts. However, what LISFS computes is only a path
through it.

Facetted classification à la Prieto-Dı́az and type isomorphisms
à la Di Cosmo are opposite methods for component finding. The
former is informal and manual, while the latter is formal and auto-
mated. However, LISFS combines both approaches. We believe it
is a step towards an answer to Mili et al.’s remark, “no solution of-
fers the right combination of efficiency, accuracy, user-friendliness
and generality to afford us a breakthrough in the practice of soft-
ware reuse.” [11]

generality: On the one hand, LIS as a framework is generic with
respect to the logic used in object descriptions. There is no
prerequisite on classifications, and on their number. On the
other hand, LISFS as a file system integrates well with other
tools. For instance, file browsers automatically become con-
cept browsers when mounted on a LISFS partition.

user-friendliness: Because it is generic, LIS can adapt to the
user’s preferred logic. Furthermore, it proposes a dialog-
based navigation in which the user needs only a passive
knowledge of the description language. This makes it easy
to grasp LIS progressively. As a file system, LISFS offers
nothing directly but can be easily used through a graphical
interface.

accuracy: As a formal framework, LIS behaviour is completely
defined. In particular, navigation is complete in a formal

sense (i.e. every object can be accessed using only incre-
ments returned by LIS; the user need not invent queries),
and increments are always relevant (i.e. they never lead to
dead-ends, and they are always focusing on a strict subcon-
cept of the current concept). Combining classifications also
increases accuracy because an application based on several
classifications will always be at least as accurate as the most
accurate of the classifications. So, if a classification is good
for homogenous contexts and another is good for heteroge-
nous contexts, the combination of both will be good in both
cases.

efficiency: LISFS is an efficient implementation of LIS that can
handle up to 100,000 objects with reasonable performance.
This is still less efficient than an ordinary file system or
database. However, it offers more services and it is still in
its infancy; hierarchical file systems and databases have been
improved by about 30 years of intensive usage. We believe
LISFS can improve its peformance to the level of state-of-
the-art file systems.

6. REFERENCES
[1] L. Byrd. Understanding the Control Flow of Prolog Programs. In S.-Å.

Tärnlund, editor, Proc. of the Logic Programming Workshop, Debrecen, 1980.
[2] T. Denmat, M. Ducassé, and O. Ridoux. Data mining and cross-checking of

execution traces. A re-interpretation of Jones, Harrold and Stasko test
information visualization. In T. Ellman and A. Zisman, editors, 20th Int. Conf.
on Automated Software Engineering. ACM Press, 2005.

[3] R. Di Cosmo. Deciding type isomorphisms in a type-assignment framework.
Journal of Functional Programming, 3(4):485–525, 1993.

[4] S. Ferré and O. Ridoux. Introduction to logical information systems.
Information Processing and Management, 40(3):383–419, 2004.

[5] S. Ferré, O. Ridoux, and B. Sigonneau. Arbitrary relations in formal concept
analysis and logical information systems. In F. Dau, M.-L. Mugnier, and
G. Stumme, editors, ICCS, volume 3596 of LNCS. Springer, 2005.

[6] B. Ganter and R. Wille. Formal concept analysis — Mathematical
Foundations. Springer, 1999.

[7] J. Jones, M. J. Harrold and J. Stasko. Visualization of Test Information to
Assist Fault Localization. In Int. Conf. on Software Engineering, 2002.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In ECOOP ’97, volume
1241 of LNCS. Springer-Verlag, 1997.

[9] J. Liberty. Programming C#. O’Reilly, 2001.
[10] Linux cross-reference project. Available on http://lxr.linux.no/.
[11] A. Mili, R. Mili, and R. Mittermeir. A survey of software reuse libraries.

Annals of Software Engineering, 5:349–414, 1998.
[12] S. Overhage and P. Thomas. WS-Specification: Specifying web services using

UDDI improvements. In Web, Web-Services, and Database Systems, volume
2593 of LNCS. Springer, 2003.

[13] Y. Padioleau and O. Ridoux. A logic file system. In USENIX Annual Technical
Conference, 2003.

[14] Y. Padioleau and O. Ridoux. A parts-of-file file system. In USENIX Annual
Technical Conference, 2005.

[15] R. Prieto-Dı́az and P. Freeman. Classifying software for reusability. IEEE
Software, 4(1):6–16, 1987.

[16] M. Rittri. Using types as search keys in function libraries. In 4th Int. Conf. on
Functional Programming Languages and Computer Architecture. ACM Press,
1989.

[17] G. Ruhe. Intelligent support for selection of COTS products. In Web,
Web-Services, and Database Systems, volume 2593 of LNCS. Springer, 2003.

[18] C. Runciman and I. Toyn. Retrieving re-usable software components by
polymorphic type. In 4th Int. Conf. on Functional Programming Languages
and Computer Architecture. ACM Press, 1989.

[19] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton Jr. N degrees of
separation: Multi-dimensional separation of concerns. In ICSE, 1999.

[20] C. J. van Rijsbergen. A new theoretical framework for information retrieval. In
Int. Conf. on Research and Development in Information Retrieval, 1986.

93

http://lxr.linux.no/

Mining Eclipse for Cross-Cutting Concerns

Silvia Breu
University of Cambridge

Computer Laboratory
Cambridge, UK

silvia@ieee.org

Thomas Zimmermann
Saarland University

Dept. of Computer Science
Saarbrücken, Germany

tz@acm.org

Christian Lindig
Saarland University

Dept. of Computer Science
Saarbrücken, Germany

lindig@cs.uni-sb.de

ABSTRACT
Software may contain functionality that does not align with
its architecture. Such cross-cutting concerns do not exist
from the beginning but emerge over time. By analysing
where developers add code to a program, our history-based
mining identifies cross-cutting concerns in a two-step pro-
cess. First, we mine CVS archives for sets of methods where
a call to a specific single method was added. In a sec-
ond step, such simple cross-cutting concerns are combined
to complex cross-cutting concerns. To compute these effi-
ciently, we apply formal concept analysis—an algebraic the-
ory. History-based mining scales well: we are the first to
report aspects mined from an industrial-sized project like
Eclipse. For example, we identified a locking concern that
crosscuts 1284 methods.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—version control ; D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhance-
ment—restructuring, reverse engineering, and reengineering

General Terms
Languages, Documentation, Algorithms

1. INTRODUCTION
As object-oriented programs evolve over time, they may suf-
fer from “the tyranny of dominant decomposition” [15]: The
program can be modularised in only one way at a time. Con-
cerns that are added later and that no longer align with that
modularisation end up scattered across many modules and
tangled with one another. Aspect-oriented programming
(AOP) remedies this by factoring out aspects and weaving
them back in a separate processing step [7]. For existing
projects to benefit from AOP, these cross-cutting concerns
must be identified first. This task is called aspect mining.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

We solve this problem by taking a historical perspective:
Our analysis is based on the hypothesis that cross-cutting
concerns are added to a project over time. A code change
in the history of a program is likely to introduce such a
concern if the modification gets introduced to various loca-
tions within a single code change. This observation is our
conceptual contribution.

Our hypothesis is supported by the following example: On
November 10, 2004, Silenio Quarti committed code changes
“76595 (new lock)” to the Eclipse CVS repository. These
changes fixed the bug #76595 “Hang in gfk pixbuf new”
that reported a deadlock1 and required the implementation
of a new locking mechanism for several platforms. The ex-
tent of Silenio Quarti’s modification was immense: He mod-
ified 2 573 methods and inserted in 1 284 methods a call to
the lock method, as well as a call to an unlock method. Ob-
viously AOP could have been used to weave in this locking
mechanism.

For the locking mechanism of Eclipse, it turns out that
the locations where calls to lock were inserted are exactly
the same as the locations where calls to unlock were added.
This is why we combine the two simple aspect candidates
into a complex aspect candidate: lock, unlock were added in
1 284 different locations. However, in the presence of many
complex aspect candidates it is not obvious how to find them
efficiently. We propose to use formal concept analysis [4] for
automatically detecting complex aspect candidates, which is
our technical contribution and detailed in the next section.

2. MINING CROSS-CUTTING CONCERNS
Previous approaches to aspect mining considered only a sin-
gle version of a program using static and dynamic program
analysis techniques. We introduce an additional dimen-
sion: the history of a project. Technically, we mine version
archives for aspect candidates.

We model the history of a program as a sequence of trans-
actions. A transaction collects all code changes between two
versions, called snapshots, made by a programmer to com-
plete a single development task. Within each transaction we
are searching for added method calls which may identify an
aspect. We consider calls to a small set of (related) methods
that are added in many (unrelated) locations a cross-cutting
concern or aspect candidate.

We refer to a method where calls are added as location,
and to the method being called simply as method. An as-
pect candidate is thus characterised by two sets: a set of

1https://bugs.eclipse.org/

94

Methods

Lo
ca

tio
ns

complex aspect
candidate

simple aspect
candidate

Figure 1: Maximal blocks represent aspect candi-
dates in a transaction (left). Here, 14 candidates
form a lattice of super and sub aspects (right). A
sub aspect (dark) crosscuts fewer locations but calls
more methods than a super aspect (light).

locations and a set of methods. This definition represents a
trade-off: albeit it is not fully general, it still captures many
interesting cross-cutting concerns and enables us to identify
them efficiently.

Aspects are maximal Blocks. We can think of a trans-
action as a cross table with locations as rows and methods
as columns (Figure 1, left). The intersection of location l
and method m is marked with a cross when the transac-
tion inserts a call to m in location l. In this representation,
each column is a simple aspect candidate; however, to cut
out noise, we only consider columns with at least 7 crosses.
Formally, a candidate is a pair (L, M) of locations L and
methods M with |M | = 1 and |L| ≥ 7 for simple candi-
dates.

Given a specific simple aspect candidate (L, M), we can
arrange the table such that all rows from L are adjacent to
each other. Now a simple aspect candidate manifests itself
as a maximal block in the table of width |M | = 1 and height
|L|. In Figure 1 such a block is marked by the grey-shaded
rectangle of size 1 × 7. A complex aspect candidate (L, M)
is a maximal block with |M | > 1: At each location l ∈ L all
methods m ∈ M are called. An example is the second dark-
grey-shaded rectangle of size 3 × 3 in Figure 1. However,
to obtain such a block for a complex aspect candidate in
general, we have to re-order not just rows but also columns.
It is therefore not obvious how to compute all blocks present
in a transaction.

Identifying maximal blocks in a cross table (or transac-
tion) T ⊆ L×M is provided by the algebraic theory of for-
mal concepts [4]. A maximal block is a pair (L, M) where
the following holds:

L = {l ∈ L | (m, l) for all m ∈ M}
M = {m ∈ M | (m, l) for all l ∈ L}

Each block (L, M) is maximal in the following sense: we
can’t add another method m to M without shrinking L to
ensure that all locations in L call m. Likewise, we can’t add
another location l to L without shrinking M . The definition
allows for blocks of any size. However, we only consider
blocks with |L| ≥ 7 as aspect candidates. To identify the
most interesting ones, we additionally take the area |L|×|M |
of a block as a measure.

113

2 5

11 12

14

15 17 18

19

3
4 7 16 20 2122 6 8

9

10

23

24 25

26

0

27

Figure 2: The lattice of aspect candidates from a
commit to Eclipse CVS on 2004-03-01 by developer
ptff. Candidate 6 contains 14 additions of calls to
unsupportedIn2().

In the worst case, a transaction may contain exponen-
tially many blocks. This makes concept analysis potentially
expensive–even in the presence of efficient algorithms [9].
This is not a concern here since we compute the blocks for
each transaction individually. Computing all blocks for the
43 270 transactions of Eclipse took about 43 seconds, that
is, about one millisecond per transaction.

The aspect candidates of a transaction form a lattice given
the following partial order: (L, M) ≤ (L′, M ′) iff L ⊆ L′. A
sub aspect cross-cuts fewer locations than its super aspect
but calls more methods (c.f. Figure 1, right). In our expe-
rience, aspects in one transaction are rarely in a super/sub
order but typically unordered.

3. EXAMPLES
Figure 2 shows the lattice of all aspect candidates from
an Eclipse CVS commit transaction on 2004-03-01. In the
lattice two aspects are connected if they are in a direct
super/sub-concept relation. Nodes are given the shape of
the corresponding block which gives prominence to large as-
pect candidates: For example, candidate 6 contains 14 lo-
cation where calls to unsupportedIn2() were added. This
method throws an exception if the operation called is not
supported at API level 2.0.

public void setName(SimpleName name) {
if (name == null) {

throw new IllegalArgumentException();
}
ASTNode oldChild = this.methodName;
preReplaceChild(oldChild, name, NAME_PROPERTY);
this.methodName = name;
postReplaceChild(oldChild, name, NAME_PROPERTY);

}

An even larger example for a cross-cutting concerns is
the following: Eclipse represents nodes of abstract syn-
tax trees by the abstract class ASTNode and several sub-
classes. These subclasses fall into the following simplified
categories: expressions (subclass Expression), statements
(subclass Statement), and types (subclass Type). Addi-
tionally, each subclass of ASTNode has properties that cross-
cut the class hierarchy. An example for a property is the
name of a node: There are named (QualifiedType) and
unnamed types (PrimitiveType), as well as named expres-
sions (FieldAccess). Additional properties include the type,

95

48

0

1

3

4

19

5

6

24

9

10

11

12

13

14

15
16 1718

21
22 23

27 30

36

7

28 29 3231

37

25

26 33

39 41

4734

35

38

40

46

4243

44

45

8

2

20

Figure 3: The lattice of aspect candidates from a
commit to Eclipse CVS on 2004-02-25 by developer
ptff. Candidate 10, e.g., contains 104 additions of
calls to preReplaceChild(3), postReplaceChild(3).

expression, operator, or body that are associated with a node
in an abstract syntax tree.
This is a typical example for a role super-imposition con-
cern [12]. As a result of this cross-cut, every named subclass
of ASTNode implements the method setName which results in
duplicated code that is difficult to maintain. With aspect-
oriented programming the concern could be realised with
the method introduction mechanism.

Our mining approach revealed this cross-cutting concern
with several aspect candidates. The lattice for the corre-
sponding commit transaction is shown in Figure 3.

The methods preReplaceChild and postReplaceChild

are called in the aforementioned setName method and many
other methods. Node 10 contains 104 locations where calls
to both methods are added. The methods preLazyInit and
postLazyInit guarantee the safe initialisation of properties
and calls to them are added in 78 locations; node 11 is the
corresponding node in the lattice in Figure 3. The meth-
ods preValueChange and postValueChange are called when
a new operator is set for a node; calls to them have been
added in 26 locations, represented by node 12 in the lattice.

4. DATA COLLECTION
Our mining approach can be applied to any version con-
trol system, however, we based our implementation on CVS

since most open-source projects are using it. One of the
major drawbacks of CVS is that commits are split into indi-
vidual check-ins and have to be reconstructed. For this we
use a sliding time window approach [20] with a 200 seconds
window. A reconstructed commit consists of a set of revi-

sions R where each revision r ∈ R is the results of a single
check-in.

Additionally, we need to compute method calls that have
been inserted within a commit operation R. For this, we
build abstract syntax trees (ASTs) for every revision r ∈ R
and its predecessor and compute the set of all calls C1 in r
and C0 for the preprocessor by traversing the ASTs. Then
Cr = C1 \ C0 is the set of inserted calls within r; the union
of all Cr for r ∈ R forms a transaction T =

S
r∈R Cr which

serves as input for our aspect mining.
Unlike Williams and Hollingsworth [18, 19], our approach

does not build (compile, link) snapshots of a system to com-
pute inserted method calls. As they point out, such inter-
actions with the build environment (compilers, make files)
are extremely difficult to handle and result in high com-
putational costs. Instead, we analyse only the differences
between single revisions. As a result, our preprocessing is
cheap, as well as platform- and compiler-independent; the
drawback is that types cannot be resolved because only one
file is investigated. In particular, we miss the signature of
called methods. In order to reduce name collision, we use
the number of arguments in addition to method names to
identify methods calls. We believe this is good enough be-
cause we are analysing one transaction at a time.

5. RELATED WORK
While this work is not the first that applies formal concept
analysis as static analysis to mine cross-cutting functional-
ity, it is the first that leverages software repositories to do
so. Furthermore, our approach is the first that scales to
industrial-sized projects such as Eclipse.

Static Aspect Mining. The Aspect Browser [5] iden-
tifies cross-cutting concerns with textual-pattern matching
(much like “grep”) and highlights them. The Aspect Min-
ing Tool (AMT) [6] combines text- and type-based analysis
of source code to reduce false positives. Ophir [14] uses a
control-based comparison, applying code clone detection on
program dependence graphs. Tourwé and Mens [17] intro-
duce an identifier analysis, that is based on formal concept
analysis for mining aspectual views such as structurally re-
lated classes and methods. Krinke and Breu [8] propose an
automatic static aspect mining based on control flow. The
control flow graph of a program is mined for recurring exe-
cution patterns of methods. The fan-in analysis by Marin,
van Deursen, and Moonen [13] determines methods that are
called from many different places—thus having a high fan-in.
Our approach presented here is similar to the fan-in analy-
sis. However, with access to serveral versions of a program
we can rule out certain such functions as non cross-cutting
and therefore are more precise.

Dynamic Aspect Mining. DynAMiT (Dynamic Aspect
Mining Tool) [1, 3] is a dynamic approach that analyses
program traces reflecting the run-time behaviour of a sys-
tem in search for recurring execution patterns of method
relations. Tonella and Ceccato [16] suggest a technique that
applies concept analysis to the relationship between execu-
tion traces and executed computational units (methods).

Hybrid Techniques. Loughran and Rashid [11] investi-
gated possible representations of aspects found in a legacy
system in order to provide best tool support for aspect min-
ing. Breu also reports on a hybrid approach [2] where the

96

dynamic information of the previous DynAMiT approach is
complemented with static type information such as static
object types.

Mining Co-change. One of the most frequently used
techniques for mining version archives is co-change. The
basic idea is simple: Two items that are changed together
in the same transaction, are related to each other. Our ap-
proach is also based on co-change. However, we use a differ-
ent, more specific notion of co-change. Methods are part of
a (simple) aspect candidate when they are changed together
in the same transaction and additionally the changes are the
same, i.e., a call to the same method is inserted.

Mining Co-addition of Method Calls. Recently, re-
search extended the idea of co-change to additions and ap-
plied this concept to method calls: Two method calls that
are inserted together in the same transaction, are related to
each other. Williams and Hollingsworth used this obser-
vation to mine pairs of functions that form usage patterns
from version archives [19]. Livshits and Zimmermann used
data mining to locate patterns of arbitrary size and applied
dynamic analysis to validate their patterns and identify vi-
olations [10]. Our work also investigates the addition of
method calls. However, within a transaction, we do not
focus on calls that are inserted together, but on locations
where the same call is inserted. This allows us to identify
cross-cutting concerns rather than usage patterns.

6. CONCLUSIONS
We are the first who leverage version history to mine aspect
candidates. Previous approaches considered a program only
at a particular time, using traditional static and dynamic
program analysis techniques. One fundamental problem is
their scalability. In contrast, our history-based aspect min-
ing approach scales well to industrial-sized projects such as
Eclipse with million lines of codes.

Formal concept analysis provides a framework to mine and
understand aspect candidates: A transaction is a relation
over locations and methods where aspect candidates are the
maximal blocks of this relation. These form a lattice of super
and sub concepts and can be computed efficiently.

Besides general issues such as performance or ease of use,
our future work will concentrate on the following topics:

Measure precision We plan to evaluate our technique by
manually investigating the top-ranked aspect candi-
dates to check whether they are actual cross-cutting
concerns. The resulting precision will measure the ef-
fectiveness of our approach.

Combine several transactions Cross-cutting concerns
are frequently introduced within one transaction and
extended to new locations in later transactions. Al-
though such concerns are recognised by our technique
as several aspect candidates, these candidates may be
missed. To locate such aspect candidates, we will use
localities. For instance, two transactions are related if
they changed the same locations or were created by
the same developer.

For future and related work regarding history-based aspect
mining, see:

http://www.st.cs.uni-sb.de/softevo/

7. REFERENCES
[1] S. Breu. Aspect Mining Using Event Traces. Master’s

thesis, University of Passau, Germany, Mar. 2004.
[2] S. Breu. Extending Dynamic Aspect Mining with Static

Information. In Proceedings of 5th International Workshop
on Source Code Analysis and Manipulation (SCAM), pages
57–65. IEEE Computer Society, Sept./Oct. 2005.

[3] S. Breu and J. Krinke. Aspect Mining Using Event Traces.
In Proceedings of 19th International Conference on
Automated Software Engineering (ASE), pages 310–315.
IEEE Press, Sept. 2004.

[4] B. Ganter and R. Wille. Formal Concept Analysis:
Mathematical Foundations. Springer, Berlin, 1999.

[5] W. G. Griswold, Y. Kato, and J. J. Yuan. Aspect Browser:
Tool Support for Managing Dispersed Aspects. Technical
Report CS99-0640, UC, San Diego, 1999.

[6] J. Hannemann and G. Kiczales. Overcoming the Prevalent
Decomposition of Legacy Code. In Workshop on Advanced
Separation of Concerns, 2001.

[7] G. Kiczales et. al. Aspect-Oriented Programming. In
Proceedings of 11th European Conf. on Object-Oriented
Programming (ECOOP), 1997.

[8] J. Krinke and S. Breu. Control-Flow-Graph-Based Aspect
Mining. In 1. Workshop on Aspect Reverse Engineering
(WARE) at Working Conference on Reverse Engineering
(WCRE), Nov. 2004.

[9] C. Lindig. Fast concept analysis. In G. Stumme, editor,
Working with Conceptual Structures – Contributions to
ICCS 2000, pages 152–161, Germany, 2000. Shaker Verlag.

[10] B. Livshits and T. Zimmermann. DynaMine: finding
common error patterns by mining software revision
histories. In Proc. of European Software Engineering
Conference/International Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 296–305, New
York, NY, USA, 2005. ACM Press.

[11] N. Loughran and A. Rashid. Mining Aspects. In Workshop
on Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design (AOSD), 2002.

[12] M. Marin, L. Moonen, and A. van Deursen. A classification
of crosscutting concerns. In ICSM, pages 673–676. IEEE
Computer Society, 2005.

[13] M. Marin, A. van Deursen, and L. Moonen. Identifying
aspects using fan-in analysis. In 11th Working Conference
on Reverse Engineering (WCRE), pages 132–141. IEEE
Computer Society, Nov. 2004.

[14] D. Shepherd and L. Pollock. Ophir: A Framework for
Automatic Mining and Refactoring of Aspects. Technical
Report 2004-03, U Delaware, 2003.

[15] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N
Degrees of Separation: Multi-Dimensional Separation of
Concerns. In ICSE-21, pages 107–119, 1999.

[16] P. Tonella and M. Ceccato. Aspect mining through the
formal concept analysis of execution traces. In 11th
Working Conference on Reverse Engineering (WCRE),
pages 112–121. IEEE Computer Society, Nov. 2004.

[17] T. Tourwé and K. Mens. Mining aspectual views using
formal concept analysis. In Proc. of Workshop on Source
Code Analysis and Manipulation (SCAM), pages 97–106.
IEEE Computer Society, 2004.

[18] C. C. Williams and J. K. Hollingsworth. Automatic mining
of source code repositories to improve bug finding
techniques. IEEE Transactions on Software Engineering,
31(6):466–480, June 2005.

[19] C. C. Williams and J. K. Hollingsworth. Recovering system
specific rules from software repositories. In Proc. of the
International Workshop on Mining Software Repositories,
pages 7–11, May 2005.

[20] T. Zimmermann and P. Weißgerber. Preprocessing CVS
data for fine-grained analysis. In Proc. Intl. Workshop on
Mining Software Repositories (MSR), Edinburgh, Scotland,
May 2004.

97

A Lightweight Approach to Technical Risk Estimation
via Probabilistic Impact Analysis

Robert J. Walker, Reid Holmes, Ian Hedgeland
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

{rwalker, rtholmes}@cpsc.ucalgary.ca

Puneet Kapur, Andrew Smith
Chartwell Technology Inc.
Calgary, Alberta, Canada

{pkapur, asmith}@chartwelltech.com

ABSTRACT
An evolutionary development approach is increasingly common-
place in industry but presents increased difficulties in risk manage-
ment, for both technical and organizational reasons. In this con-
text, technical risk is the product of the probability of a technical
event and the cost of that event. This paper presents a technique
for more objectively assessing and communicating technical risk in
an evolutionary development setting that (1) operates atop weakly-
estimated knowledge of the changes to be made, (2) analyzes the
past change history and current structure of a system to estimate
the probability of change propagation, and (3) can be discussed
vertically within an organization both with development staff and
high-level management. A tool realizing this technique has been
developed for the Eclipse IDE.

Categories and Subject Descriptors: D.2.7 [Software Engi-
neering]: Distribution, Maintenance, and Enhancement; D.2.7
[Software Engineering]: Management.

General Terms: Design, Management, Measurement.

Keywords: Technical risk estimation, decision support, revision
history, probabilistic impact analysis.

1. INTRODUCTION
Making good decisions is key to successful development, yet re-
mains a difficult task in an evolutionary development setting. Many
organizations struggle to consider both “managerial” and “tech-
nical” factors on an objective basis. “Managerial” factors that
must be considered include predictions of market forces, conflict-
ing stakeholder interests, and budgetary constraints [23]; “techni-
cal” factors include the ease with which proposed extensions can be
accommodated by the current software structure [3]. The organi-
zational difficulties arise from the fact that those with the decision
making roles typically have the least access to detailed technical
knowledge [3], while those with the detailed technical knowledge
have the least ability to influence decisions about the direction of
development [19]. To bridge this gap, a means for assessing the
technical risk of proposed changes is needed that can be audited,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06,May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

for the sake of objectivity, and can serve as the basis for vertical
communication within an organization.

Some authors emphasize the risk of introducing flaws into soft-
ware [12] or causing the failure of a software project [3]. While
these are clearly significant threats, we wish to consider the risk of
any modification task in a more general sense: the risk of an event
is defined as the product of the probability of the event and the
cost of the event should it happen. Thus, we can see that even un-
likely events with very high costs can result in unacceptably high
risks. We expect that an analyst must have at least an approxi-
mate sense of key points within a software system that are likely to
change. The task then becomes one of determining to what extent
these key changes are likely to cause other changes in a cascad-
ing sequence: probabilistic change impact analysis. A variety of
approaches to change impact analysis have been proposed in the
past, but none is appropriate to our context. Many of these tech-
niques expect to be provided with implementations of the initial
changes in order to perform their analyses [14]; this is not practi-
cable at an early planning stage. Other change impact techniques
exist that try to support decision-making at early phases; some of
these expect complete and accurate documentation to be available
for analysis [25], others require detailed grammars to be specified
as an input to the analysis [13], and still others depend solely on
the qualitative judgment of a set of experts [21]. None of these
techniques copes well with the assessment and communication of
technical risk within an evolutionary development and within an
organization in which decision making tends to be separated from
detailed, technical knowledge.

Instead, we propose a decision support technique (1) that sup-
ports simple entry and update by an analyst of even weakly-
estimated knowledge of likely changes, (2) that automatically per-
forms change impact estimation based on such “educated guesses,”
and (3) that can be used as a basis for vertical communication
within an organization. Our technique works from three inputs:
a structural dependence graph that is automatically extracted from
a software project; change history data for that project that is au-
tomatically extracted from a CVS repository; and an indication by
an analyst of the key components where a proposed feature is ex-
pected to result in a definite change. The technique then uses the
structural dependence graph and change history data to estimate the
probability that these definite changes will propagate to the rest of
the system. Our algorithms are defined in such a way that chang-
ing the indication of the definite changes is simple and the results
recomputed in real time. The technique has been implemented as a
plugin to the Eclipse IDE and deployed to our industrial collabora-
tors for an initial evaluation.

The remainder of the paper is structured as follows. Section 2

98

describes our concrete tool implemented as an Eclipse plugin. Sec-
tion 3 outlines the data extraction steps used to drive the technical
risk estimation algorithms. Section 4 describes and analyzes the
theoretical model on which our technique is based. A preliminary,
informal industrial evaluation has been performed and is described
in Section 5. An analysis of the potential weaknesses of this ap-
proach, future work, and remaining issues are discussed in Sec-
tion 6. Section 7 considers related work. The contributions of this
paper are a theoretical model for lightweight, probabilistic change
impact estimation and a discussion of how this model can be used
for decision-support in an industrial context.

2. THE TRE TOOL
Technical risk estimation is a process of specifying starting points
for changes and estimating the likely propagation of those changes
to the rest of the system. We have implemented a tool, named TRE,
to support this process as a plugin to the Eclipse integrated develop-
ment environment. The TRE tool analyzes structural dependencies
between Java files within a project, plus historical data from a CVS
repository regarding old versions of those files, to perform its es-
timations. Analysis is performed at the granularity of types; we
consider alternatives in Section 6.

Four steps are needed to perform technical risk estimation:
(1) extraction of dependency structure from the project source;
(2) extraction of change history data from a CVS repository;
(3) creating a conditional probability (CP) graph model (or load-
ing an existing CP graph model); and (4) interacting with the CP
graph model to make technical risk estimates. The first three steps
are supported via Eclipse wizards; Figure 1 shows an example.

Extraction of dependency structure operates on one or more
Eclipse projects residing in the workspace, as specified by the an-
alyst. Currently, dependency analysis is performed only on Java
files. The result of this extraction is an XML file representing the
dependency graph for the types declared within the project. Depen-
dencies on types external to the project are noted as such. External
types are considered immutable for the purposes of technical risk
estimation. Our interpretation of “dependency” is explained further
in Section 3.1.

Extraction of change history data operates on a module in the
CVS repositories that the workspace records (these can be viewed
and modified via the standard CVS Repositories view of Eclipse).
The result of this extraction is an XML file representing the inferred
atomic change sets that have occurred in the repository or reposito-
ries specified by the analyst. The inference process performed by
the tool is described in Section 3.2.

A CP graph model can be generated from any structural depen-
dency graph and any change history data. The CP graph is effec-
tively a structural dependency graph annotated with probabilities
on the dependency edges; each of these represents the conditional
probability that a change to the target node will result in a change
to the source node. The way in which these conditional probabili-
ties are computed is described in Section 3.3. The CP graph is also
written to an XML file; this file may be reloaded at later times to
continue analysis.

Finally, the technical risk graph model may be used to estimate
the risk of performing proposed changes to a project. The analyst
indicates which types declared in the project will be the seed points
for change. TRE then estimates the technical risk by propagating
these seed points through the remainder of the CP graph according
to the conditional probabilities annotating the dependencies. De-
tails of the algorithms used are described in Section 4. The risk
of changing a type is defined as the product of the probability of
changing that type and the cost of changing that type. The total

Figure 1: The Eclipse wizard used to select CVS projects for
extracting change history data. Here, change history data
is about to be extracted from the org.eclipse.jdt.core
project.

risk of a proposed change is the sum of the risks of changing all
the types in the project. Currently, the cost of changing any one
type is defined uniformly as 1 for the sake of simplicity. Various
alternatives are possible; we consider this issue further in Section 6.

An Eclipse perspective has been implemented to simplify the an-
alyst’s interaction with the TRE tool during technical risk estima-
tion. In Figure 2, we see an analysis being performed on a risk
graph representing a portion oforg.eclipse.jdt.core . The
perspective provides two views: on the left is theRisk Graph Nodes
view, and on the right is theTechnical Risk Resultsview. Four but-
tons are present on the tool bar for the Risk Graph Nodes view:
Extract Structure, Extract History, Create CP Graph, andSelect
CP Graph. The first three correspond to the first three steps in the
process described above; the fourth allows an existing CP graph to
be reloaded.

The final, interactive step of the technical risk estima-
tion process proceeds as the analyst selects or unselects the
types displayed in the Risk Graph Nodes view. In the
example, we see thatorg.eclipse.jdt.core.IField and
org.eclipse.jdt.core.IMethod have been selected by the an-
alyst. The computation performed by the tool is displayed both in
the Technical Risk Results view and on the status line. In the Tech-
nical Risk Results view is a list of the types in the project along
with the risk of that type changing and the uncertainty in that risk
calculation. The types are sorted and coloured according to the cal-
culated risk: the most intense red (resp. darkest grey in a greyscale
rendering) and the highest risk is at the top, shading to white and
the lowest risk at the bottom. Note that the risk of the selected types
changing is currently defined as 1, and so these appear at the top of
the list.

3. DATA PREPARATION
Issues involving the design of the basic data extraction and prepa-
ration steps of the tool are considered in this section. We begin
with structural dependency extraction in Section 3.1, continue with
change history data extraction in Section 3.2, and end with the con-
struction of a simple conditional probability model annotating the
structural dependencies in Section 3.3.

3.1 Structural Dependency Extraction
To perform structural dependency extraction, TRE begins by re-

99

Figure 2: Technical Risk Perspective in Eclipse, showing interaction involving technical risk estimation on JDT core.

questing that an AST be constructed for the selected project(s). A
subclass oforg.eclipse.jdt.core.jdom.ASTVisitor deter-
mines dependencies by visiting the nodes in this AST. TypeA is
considered dependent on typesomepkg.B if and only if: (a) the
nameB (or somepkg.B) is explicitly mentioned byA and this defi-
nitely resolves to typesomepkg.B ; or (b) A contains an expression
that definitely resolves to typesomepkg.B and the result of this
expression is used within a larger expression, e.g., the result type
of a method invocation resolves tosomepkg.B and this is used as
the prefix to another method invocation. Other definitions of de-
pendency could have been chosen; this one was convenient.

A structural dependency graphS = (T, D) is defined as the
result of this process, whereT is the set of types declared within
the selected project(s) andD is the set of dependencies between
types as described above. Self-dependencies are ignored. More
formally,

D ⊆ T × T \ {(t, t)|t ∈ T}. (1)

3.2 Change History Extraction
To perform change history extraction, TRE traverses
the specified module within a CVS repository. For
each file, the log entries are retrieved (instances of
org.eclipse.team.internal.ccvs.core.ILogEntry),
and information on the author, comment, and timestamp stored for
the file revision are recorded.

Atomic change sets are inferred by comparing log entry data.
Two files that share the same author and comment, and where the
timestamps of adjacent check-ins differ by less than three min-
utes [11], are considered members of the same atomic change set.

The change history is then recorded as an XML file consisting
of a sequence of atomic change sets recording the author and com-
ment, and the earliest of the timestamps, plus the set of files that
were modified.

3.3 CP Graph Construction
To construct a conditional probability (CP) graph, the structural
dependency graph is initially annotated with data from the change
history. The number of revisionsvi to each typeti is recorded
at each node in the structural dependency graph. For each edge
ei,j = (ti, tj) in the graph, the number of times thatti and tj

occur in the same atomic change set (notedvij = vji) is recorded
at that edge. The conditional probabilities of a change propagating

across each edgeei,j may then be calculated as:

Pr(ti|tj)|ei,j ≈ vij/vi. (2)

To deal with the discreteness of the data and its occasional poor
quality, the results of Equation 2 must be adjusted. This equation
makes two assumptions: (1) thatvi ≥ vij ; and (2) thatvi > 0. If
either is false, the result will be an invalid probability, so the result
must be clamped to fall within the unit interval[0, 1].

To deal with sparse data, we track an interval of conditional prob-
abilities. In the case of few or no revisions, both the numerator and
denominator can be 0; nothing can then be said other than that the
probability of a change propagating across an edge is somewhere
between 0 and 1. Similarly, we wish to account for the difference in
quality between evaluating, e.g.,1/10 and100/1000; while each
would result in a calculated conditional probability of0.1, our con-
fidence in the latter would be much stronger. We borrow a simple
approach involved in estimating the accuracy of physical measure-
ments: we consider the error in the numerator and denominator to
be±0.5. The results are again clamped to the unit interval.

Combining these adjustments, we arrive at the following equa-
tions:

Pr
min

(ti|tj)|ei,j = (3){
0 if vi = vj = 0,

max
{

0,
vij − 0.5
vi + 0.5

}
otherwise;

Pr
max

(ti|tj)|ei,j = (4){
1 if vi = 0,

min
{

1,
vij + 0.5
vi − 0.5

}
otherwise.

(Continuing our simple example, 1/10 would result in a conditional
probability range [0.048,0.158] while 100/1000 would result in a
conditional probability range [0.099,0.101]).

The conditional probability graphG is then recorded in an XML
file as a structural dependency graphS = (T, D) annotated with
the conditional probability intervals for each edge, computed ac-
cording to Equations 3 and 4. More formally,

G = (S, πC : D 7→ I), where (5)

I = {[m, n]|m ≥ 0 ∧ n ≤ 1 ∧m ≤ n}. (6)

100

4. THEORETICAL MODEL
In this section, we consider details of the algorithms underlying
the TRE tool and their formal basis. The technical risk estimation
step proceeds from a set of types marked as seed points for change
by the analyst. The probability of these types changing is defined
as 1, although the algorithms below could make use of any constant
probabilities attached to these seeds.

In Section 4.1, we describe how the probabilistic change impact
can be computed from a conditional probability graph and a set of
seed types to provide a probabilistic change impact model. In Sec-
tion 4.2, the final step of estimating the technical risk is considered.

4.1 Probabilistic Change Impact Analysis
Assume that each modification to a type is due either to an immedi-
ate modification (i.e., the type is in the seed set) or to a propagation
across a sequence of direct dependencies stemming from such an
immediate modification.

Begin with a conditional probability graphG as defined in Sec-
tion 3.3. Let∆0 ⊆ T be a set representing the seed types that the
analyst assumes will be immediately modified. We wish to deter-
mine the probable change impact to the remainder of the types in
the project, i.e., for every typet ∈ T , we wish to determine the
probability thatt will be modified given that every type in∆0 is
modified. We can consider this task to involve the construction of
a fuzzy set∆ = (T, µ) whereµ : T 7→ [0, 1] is a membership
function indicating the probability that each type will change [28].

From the definition of conditional probability we have that

Pr(t1 ∩ t2 ∩ t3) = Pr(t1|t2 ∩ t3) · Pr(t2|t3) · Pr(t3)

for any three typest1, t2, t3. We have the assumption that a modifi-
cation to a givent can occur only either becauset ∈ ∆0 (in which
case this probability is1) or because a type upon whicht depends
has changed. There must exist a path throughG from some typeδ
in ∆0 to t for t to have changed. For every pathδ, t1, t2, . . . , tn, t,
the probability thatt must change is:

Pr

(
t ∩ δ ∩

n⋂
i=1

ti

)
=

Pr

(
t

∣∣∣∣∣δ ∩
n⋂

i=1

ti

)
· Pr

(
t1

∣∣∣∣∣δ ∩
n⋂

i=2

ti

)

· Pr

(
t2

∣∣∣∣∣δ ∩
n⋂

i=3

ti

)
· . . . · Pr (tn|δ) · Pr (δ) .

This equation simplifies significantly because a given type in the
path will change only if its predecessor changes; hence, each inter-
section collapses to the type at the destination of the path:

Pr (t) |δ =

Pr (t|t1) ·Πn−1
i=1 Pr (ti|ti+1) · Pr (tn|δ) · Pr (δ) . (7)

There may be more than one path that leads fromδ to t, and there
may be many types in∆0 from which paths lead tot. Each path
itself yields a fuzzy setΘi indicating the probability that a change
to its start will propagate to parts on that path. The fuzzy set∆
that we are interested in determining is simply the union over every
Θi that is yielded from a path beginning at some element of∆0.
We consider the probability thatt will change to be the maximum
of the probabilities calculated along all possible paths from a part
in ∆0 to t, which is consistent with the standard definition of the
union of fuzzy sets [28].

We can see that the probability of a change propagating from a
source types to a target typet is analogous to finding the longest

path between two vertices in a graph. Because the probability will
either remain constant or decrease at each step, infinite paths due to
cycles do not cause us difficulties. We proceed with a variation on
a modified Dijkstra’s algorithm [4]. In this variation, probability is
analogous to a reciprocal of distance, requiring the calculation of
maxima to replace minima,0 to replace∞, etc. In the following
algorithm,G is a conditional probability graph as defined in Equa-
tion 5, ands ∈ T is a distinguished source type; the output is a
functionρs : T 7→ I. The lower bounďρs and upper bound̂ρs of
ρs for each value ofT will be calculated separately. Furthermore,
we defineDt = {q|(q, t) ∈ D} be the types directly dependent on
typet.

CHANGE-PROBABILITY(G, s)
1 for every type t ∈ T
2 ρ̌s(t) := 1, W := T
3 for q ∈ T \ {t}
4 ρ̌s(q) := 0
5 while W 6= ∅
6 find some w ∈ W such that ρ̌s(w) is maximal
7 W := W \ {w}
8 for v ∈ W ∩Dw

9 ρ̌s(v) := max{ρ̌s(v), ρ̌s(w)× Prmin(v|w)}
10 for every type t ∈ T
11 ρ̂s(t) := 1, W := T
12 for q ∈ T \ {t}
13 ρ̂s(q) := 0
14 while W 6= ∅
15 find some w ∈ W such that ρ̂s(w) is maximal
16 W := W \ {w}
17 for v ∈ W ∩Dw

18 ρ̂s(v) := max{ρ̂s(v), ρ̂s(w)× Prmax(v|w)}.

The proof thatCHANGE-PROBABILITY computes the proba-
bility that f will change given thats will change is largely identical
to that for Dijkstra’s algorithm. The direction of inequalities is re-
versed, and the sums are replaced with products, which does not
alter the argument. Thus,ρs(f) represents the maximum product
of the input conditional probabilities (for a lower bound traversal
or for an upper bound traversal) over any path froms to f . Given
this and thatPr(s) = 1, ρs(f) = Pr(f)|s by Equation 7.

An implementation of Dijkstra’s algorithm that uses an unsorted
working set has running time inO(|T |2); a more rational prior-
ity queue implementation based on Fibonacci heaps reduces this
to O(|T | log(|T |) + |D|). The changes introduced byCHANGE-
PROBABILITY do not alter these arguments.

Because, in general, we will want to know the probability
of changing each type given that some set of source types will
change, we can consider some alternatives. The choice that we
have chosen to implement repeats the computation ofCHANGE-
PROBABILITY for each of the typesδ ∈ ∆0. We compute for
each care ofδ only on demand, and cache the results. Other alter-
natives are considered in [26].

We define arisk graphR to be a structural dependence graph
augmented with the change propagation probability functionsρs

for all s ∈ T :

R = ((T, D), {ρs : T 7→ I|s ∈ T}). (8)

Attempting to access one of these functions that has not been
cached results in its computation.

For a given risk graphR and seed set∆0, our task is now to
determine the fuzzy set(∆, µ) representing the probability that a
change will spread from the seed set. The membership functionµ

101

must also be computed with lower (µ̌) and upper (̂µ) bounds, for
each type. The algorithm below provides this step.

FUZZY-CHANGE-SET(R, ∆0)

1 ∆ := T
2 for every type t ∈ T
3 find some maximal ρ̌δ(t) ∈ {ρ̌d(t)|d ∈ ∆0}
4 µ̌(t) := ρ̌δ(t)
5 find some maximal ρ̂δ(t) ∈ {ρ̂d(t)|d ∈ ∆0}
6 µ̂(t) := ρ̂δ(t)

The total running time forFUZZY-CHANGE-SET is in
O(|T |2) for an implementation based on unordered sets, orO(|T |)
for the Fibonacci heap implementation. Details of this analysis can
be found elsewhere [26].

4.2 Estimation of Technical Risk
If we can assume that there exists a cost-of-change functionκ :
T 7→ <+ that is independent of paths through the risk graph,
and given the fuzzy set(∆, µ), we can compute the total techni-
cal riskτ of performing a change∆0 as:

τ |∆0 =
∑
t∈T

κ(t) · µ(t)|∆0 . (9)

Ignoring the cost of calculatingκ, Equation 9 consists of a simple
sum of products. The functionsµ andκ can each be recorded in
a set sorted in the same order asT , thus yieldingO(1) lookup
times. The total running time to compute Equation 9 will thus be
in O(|T |). As a starting point, we have used the simplistic notion
thatκ ≡ 1; we consider more realistic options in Section 6.

5. PRELIMINARY EVALUATION
As a preliminary step in evaluating the efficacy of the approach, a
study was undertaken by our industrial partners on the use of the
tool to plan change tasks on their codebase. This study is neces-
sarily informal at this stage, as (un)usability issues inherent with a
prototype can easily mask effects of (un)usefulness. For the sake
of better understanding how our partners would approach the use
of the TRE tool, they were given the freedom to conduct the study
in a manner that made sense to them.

The tool was assessed by a team of four individuals: one in
a technical decision making role with little current knowledge of
the fine-grained code structure; one in a technical lead role involv-
ing small-scale design and implementation decisions; and two key
front-line developers. This team considered a variety of tasks: three
code optimizations, three bug fixes, and three changed require-
ments; specific details of the tasks are hidden to protect intellectual
property of our industrial partners. For each task, the team was first
asked to give an estimate of the risk involved, in terms of likely
number of files that would need modification. They then used the
TRE tool to estimate the risk. And finally, the actual number of
files that were modified were compared against the estimates. The
team was given a written explanation of the operation of the TRE
tool, and encouraged to discuss it as a group.

A serious issue was raised by the team: the granularity at which
the tool expects its input is too fine-grained for individuals with
technical decision making roles but who do not develop code on
a daily basis. People in such roles understand the software at an
abstract level, often architectural. But such knowledge is difficult
to manually translate into a selection of a set of files. Without the
ability to formulate a very coarse model, downwards communica-
tion within an organization will not be facilitated by the tool. Fortu-

Task Team-est. Tool-est. Actual
risk risk change

Optimization 1 5–10 10–17 10
Optimization 2 2–4 2–13 5
Optimization 3 3–5 1 4
Bug fix 1 1–2 1–2 2
Bug fix 2 11 11 14
Bug fix 3 3 1 3
Changed requirements 1 1–2 11–31 2
Changed requirements 2 1–2 1 3
Changed requirements 3 1–2 5–9 2

Table 1: Data reported by the industrial team for their change
tasks.

nately, improving this situation can be achieved through better user
interface and workflow design that we discuss further in Section 6.

The team summarized their view of the TRE tool thus: “The tool
seems to be most useful with certain types of changes. For bug fixes
and requirement changes the results using the tool seem reasonably
close. However for optimizations it was not very useful and seems
to over-estimate the changes required.”

The data that they collected and reported is summarized in Ta-
ble 1. When asked for more detail regarding what these num-
bers mean, they explained the process that they used: the team-
estimated risk represents how many files they considered likely to
change, while the tool-estimated risk were how many files had a
50% or greater probability of changing.

In two of the three optimization tasks, the actual change corre-
sponded to the range of technical risk reported; in the third case,
our interpretation is that the current structural dependency model
did not account for a propagation either due to a subtle relationship
(such as those that Ying and colleagues [27] consider) or due to one
that a better model could account for, e.g., the need to propagate an
interface change through the type hierarchy. For bug fix task 1, the
tool appears to have performed well; however, for bug fix tasks 2
and 3, the tool reportedly underestimated the risk. The report for
bug fix task 2 may be a data entry error, since the tool in its present
form is unlikely not to report a range of risks. For changed require-
ments tasks 1 and 3, the tool seems to have overestimated the risk;
task 2 seems to be suffering from the same structural dependency
model issues discussed above.

Despite what seems to objectively be slightly worse performance
for the bug fix tasks and much worse for the changed requirements
tasks, the team considered the tool more useful for the bug fix tasks
and the changed requirements tasks than for the optimization tasks.
One conjecture is that the summary data does not fully represent
the reality of the situation, e.g., perhaps the correlation of the tool-
estimated risks and the actual changes is coincidence and the in-
dividual files reported as risky do not correspond to the ones that
actually require change. This conjecture must be confirmed or re-
futed in a future, more controlled study.

The team gravitated towards their natural tendency to threshold
the information and treat even a 50–50 chance of change as a pre-
diction of a definite file change and to disregard any lower prob-
abilities; in some circumstances, this will not provide an accurate
interpretation of the estimated risk. Also, whenever the change his-
tory contains no data, we are able to provide no real information on
the probability of change propagation (i.e., 0.5±0.5).

Ultimately, usability issues did limit the evaluation of the use-
fulness of the approach. Nevertheless, at least three lessons can be
taken from this exercise: (1) the detailed risk data needs to be re-
ported in a fashion that takes people’s tendency to threshold into

102

better account, and that deals with uncertainty more clearly; (2) a
more iterative approach to building these models and communicat-
ing their contents upwards and downwards through an organization
is needed, where those with less detailed knowledge can view the
data at a more abstract level; and (3) a more comprehensive struc-
tural dependency model is needed.

6. DISCUSSION AND FUTURE WORK
A number of extensions and issues remain to be considered and
possibly realized in our tool implementation.

6.1 Evaluation of model and tool
Currently, the model and tool we have described make a number of
assumptions that may be violated in the real world. Our preliminary
evaluation suggests that issues that we had considered to be minor
points of usability would actually be too severe for the tool to be
adopted in the manner intended. An iterative approach toin situ
evaluation will continue to be necessary to ensure that additional
such points do not intrude in future.

Aside from such practical issues, the question as to whether the
model that underlies the tool produces results that are accurate re-
mains unanswered. The TRE tool reports probabilistic predictions
that are valid only for a single trial; one should expect that a set of
predictions will become very inaccurate after only a few trials. In-
stead, we have determined a means for correlating the actual profile
of a large number of individual probabilistic predictions and single
trials with a theoretical profile. In this manner, we hope to vary
some of the assumptions of the TRE model, such as the form of
the structural dependency model, and compare the results of these
variations quantitatively. We are in the process of implementing the
infrastructure to collect the data for such evaluations. Details of the
theory behind it are left until results from its application can also
be reported.

6.2 Sources of error
A number of issues in the way we collect and model data are po-
tential sources of error within our analyses.

An often reported issue is that of the presence of transformations
within the codebase, ranging from the renaming of types to large-
scale refactorings. We are in the process of applying the technique
of origin analysis [7] as a means to better combine data arising be-
fore and after such transformations. A finer-grained representation
of structural dependencies combined with origin analysis is likely
to improve the accuracy of our predictions.

Such transformations are but one impediment to the larger issue
of inferring causality that our model ultimately involves. While
one can determine atomic change sets either because the repository
system supports them explicitly or they can be inferred, approaches
(including ours) that depend on atomic change sets as the basis for
causality inference are at the mercy of the repository commit style
applied by the developers of a given project. For example, are entire
feature sets committed at once or are individual files checked in
on a rather ad hoc basis? Instead, a stronger model for recovering
causality is needed. Utilizing data from change request repositories
to bridge the gaps between atomic change sets is one possibility
(e.g., [6, 22]).

Of particular interest to our industrial partners is the ability to
cope with software that involves multiple languages. Our current
approach for extracting structural dependencies would need to sup-
port specific combinations of languages to understand how they in-
teract. If the number of languages to be simultaneously supported
is small and invariant, the brute force method of providing syntac-
tic and semantic analysis support is likely practicable. However, in

situations where configuration details effectively result in a prolif-
eration of small, special purpose languages, the cost of providing
such support becomes prohibitive. Lightweight approaches involv-
ing lexical analysis (e.g., [15]) must be considered as a more prac-
ticable solution.

Our current assumption that the cost of changing any given file
is constant (and “1”) regardless of any other factors is clearly un-
realistic, but serves as a simple starting point. Utilizing data on the
size of changes or the error rates connected with previous changes
(e.g., [12, 22, 17]) are more sophisticated approaches that we will
investigate in future.

6.3 Workflow and organizational issues
It is clear that the input required by the tool at present is too fine-
grained to support its use by people with only abstract knowledge
of the system under study. On the other hand, an even finer-grained
input could be useful where more specific information is known.
The theoretical model that we have described in this work does
not require that seed points be specified at the granularity of types.
Coarser-grained input could be supported by providing a tree-based
view that collapses types into packages, for example, or that other-
wise provides some form of architectural clustering (e.g., reflexion
models [16]). Likewise, the change history data could be analyzed
at a finer-granularity to allow input at the method- and field-level
when desired.

The issue then becomes one of how to interpret seed markings
at coarse granularities in terms of the underlying fine-granularity
model. Two options would seem worth pursuing. Marking a
coarse-grained item (such as a package) could be treated as equiva-
lent to marking each of its individual constituent types (or meth-
ods). This could interact with organizational workflow in such
a way that the technical decision maker’s initial estimates of risk
would be consistently higher than those of the front-line develop-
ers. What the social and organizational implications of such a phe-
nomenon might be remains unclear. Alternatively, a fraction of the
probability could be assigned to each of the underlying fine-grained
items; note that Equation 7 remains valid for probabilities of seed
points other than 1.

Other issues of practical importance include the ability to collect
the data incrementally as changes happen over time, better user in-
terface controls to adjust the way the results are displayed (e.g.,
sliders for adjusting thresholds of interest and of pessimism), basic
search functionality in the user interface, and the ability to mark
nodes with probabilities other than 1 (e.g., to specify “this is guar-
anteed not to change”). Differentiating the kind of change would
also allow the model to propagate different kinds of change in dif-
ferent fashion. The details of such categorizations, the effect on the
theoretical model, and the practicality of asking for additional input
need to be considered further.

7. RELATED WORK
Various previous work has considered the meaning of “technical
risk” and how it should be managed. Technical risk has been seen
as a serious factor in industrial development for decades (e.g., [5]),
where improved tools and process were often seen as the key means
to mitigate it. Initially, technical risk was often equated with the
risk that the proposed technology to be used in a development ef-
fort would not actually support the application, and so that devel-
opment effort would fail (e.g., [2, 3]). The move towards separa-
tion of managerial decisions and technical decisions has been seen
as emphasizing the organizational gulf between decision makers
and technical personnel [3]. More recent work attempts to provide
questionnaires to guide assessment of risk (e.g., [9]) or to leverage

103

and combine the opinions of experts [21]. The TRE tool is seen as
providing input to the release planning process [21].

Various authors have considered which risk factors are most se-
rious in software development, often based on surveys of project
managers’ opinions [20, 23]. Others have attempted more objec-
tive, quantitative approaches [18]. Still others provide survey based
approaches to evaluate the risk in a given project

A large body of work emphasizes the risk of introducing defects
into software as it is modified. Belady and Lehman provide a very
early attempt at doing this quantitatively [1]. Mockus and Weiss
provide a probabilistic model of software failures due to a vari-
ety of factors including developer experience and change propaga-
tion [12]. A large body of work by Zeller and colleagues focusses
on failure prediction based on historical data (e.g., [22, 17]).

Dependence analysis worked from a strong theoretic basis [8],
and has long been seen as important in software modification [10].
Formal undecidability lead to approximate change impact analysis
techniques [14]. However, all these techniques require detailed im-
plementations as input. In contrast, Turver and colleagues define
a technique for early change impact analysis [25]; unfortunately, it
assumes complete and accurate documentation that is rarely avail-
able in the development setting that we consider. Moonen has pro-
posed a lightweight impact analysis technique based on the cre-
ation of island grammars to describe the syntactic cues that an ana-
lyst seeks [13]; however, this approach remains too detailed for the
needs of early decision support.

Many approaches try to evaluate the quality of designs based
on quantitative measures. Tsantalis and colleagues most recently
consider how such quantitative approaches can predict change [24].

Most significant for this workshop are the large number of ap-
proaches that use historical data to guide change tasks. Both Ying
and colleagues [27] and Zimmermann and colleagues [29] consider
how frequent patterns in past change propagation can be used to
guide developers in propagating changes that they might otherwise
miss. They use thresholding to filter suggestions that are unlikely
to be important; in contrast, we must consider the presence of low
probability/high cost events in evaluating risk. The approach we
have presented in this paper is largely complementary to these,
lying at the opposite end of the spectrum between coarse-grained
planning and fine-grained implementation.

8. CONCLUSION
We have described a theoretical model for technical risk estimation
and its concrete realization as the TRE tool. TRE has been designed
to help organizations make more informed decisions about the risks
associated with modifying software elements within their chang-
ing systems. By providing an abstract view about the potential
costs of a particular change to managers, and more concrete data to
developers, the tool facilitates communication between these two
groups. Through supporting the decision making process, TRE al-
lows organizations to ground their development plans both in the
structural nature of their source code and the past development his-
tory that the system has undergone.

Although preliminary evaluation has shown a need to improve
the tool in specific ways to support this vertical communication,
we believe that most of these issues can be addressed by small im-
provements in workflow-support and usability.

Ultimately we see the TRE tool as being complementary to many
of the approaches that have come out of the repository mining com-
munity in recent years. Our work extends these approaches to pro-
vide an objective foundation for making decisions at various lev-
els of industrial organizations about the technical risk of software
modifications.

9. ACKNOWLEDGMENTS
We wish to thank Stefania Bertazzon for comments on an early
draft of this paper, and the anonymous reviewers for their ef-
forts. This work was supported in part by NSERC and in part by
Chartwell Technology Inc.

10. REFERENCES
[1] L. A. Belady and M. M. Lehman. A model of large program development.

IBM Systems J., 15(3):225–252, 1976.
[2] B. I. Blum. Three paradigms for developing information systems.Proc. Int’l

Conf. Softw. Eng., pages 534–543, 1984.
[3] C. Chittister and Y. Y. Haimes. Assessment and management of software

technical risk.IEEE Trans. Systems, Man and Cybernetics, 24(2):187–202,
1994.

[4] E. W. Dijkstra. A note on two problems in connection with graphs.
Numerische Mathematik, 1:169–271, 1959.

[5] H. Fischer. Computer system simulation of an on-line interactive command
and control system. InProc. Winter Simulation Conf., pages 333–340, 1971.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a release history database
from version control and bug tracking systems. InProc. Int’l Conf. Softw.
Maintenance, pages 23–32, 2003.

[7] M. W. Godfrey and L. Zou. Using origin analysis to detect merging and
splitting of source code entities.IEEE Trans. Softw. Eng., 31(2):166–181,
2005.

[8] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs.ACM Trans. Program. Lang. Sys., 12(1):26–60, Jan. 1990.

[9] J. Kontio, G. Getto, and D. Landes. Experiences in improving risk
management processes using the concepts of the Riskit method. InProc. ACM
SIGSOFT Int’l Symp. Foundations Softw. Eng., pages 163–174, 1998.

[10] J. P. Loyall and S. A. Mathisen. Using dependence analysis to support the
software maintenance process. InProc. Conf. Softw. Maintenance, pages
282–291, 1993.

[11] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case studies of open source
software development: Apache and Mozilla.ACM Trans. Softw. Eng. Method.,
11(3):1–38, 2002.

[12] A. Mockus and D. M. Weiss. Predicting risk of software changes.Bell Labs
Technical J., 5(2):169–180, 2000.

[13] L. Moonen. Lightweight impact analysis using island grammars. InProc. Int’l
Wkshp. Program Comprehension, pages 219–228, 2002.

[14] M. Moriconi and T. C. Winkler. Approximate reasoning about the semantic
effects of program changes.IEEE Trans. Softw. Eng., 16(9):980–992, 1990.

[15] G. C. Murphy and D. Notkin. Lightweight lexical source model extraction.
ACM Trans. Softw. Eng. Method., 5(3):262–292, 1996.

[16] G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion models:
Bridging the gap between source and high-level models. InProc. ACM
SIGSOFT Symp. Foundations Softw. Eng., pages 18–28, 1995.

[17] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component
failures. InProc. Int’l Conf. Softw. Eng., 2006. To appear.

[18] D. E. Neumann. An enhanced neural network technique for software risk
analysis.IEEE Trans. Softw. Eng., 28(9):904–912, 2002.

[19] K. S. Rajeswari and R. N. Anantharaman. Development of an instrument to
measure stress among software professionals: Factor analytic study. InProc.
SIGMIS Conf. Computer Personnel Research, pages 34–43, 2003.

[20] J. Ropponen and K. Lyytinen. Components of software development risk:
How to address them? A project manager survey.IEEE Trans. Softw. Eng.,
26(2):98–112, 2000.

[21] O. Saliu and G. Ruhe. Software release planning for evolving systems.
Innovations in Systems and Softw. Eng., 1(2), 2005. To appear.

[22] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes?
In Proc. Int’l Wkshp. Mining Software Repositories, pages 24–28, 2005.

[23] A. Tiwana and M. Keil. The one-minute risk assessment tool.Commun. ACM,
47(11):73–77, 2004.

[24] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides. Predicting the
probability of change in object-oriented systems.IEEE Trans. Softw. Eng.,
31(7):601–614, 2005.

[25] R. J. Turver and M. Munro. An early impact analysis technique for software
maintenance.J. Softw. Maintenance: Res. and Pract., 6:35–52, 1994.

[26] R. J. Walker, R. Holmes, I. Hedgeland, P. Kapur, and A. Smith. A lightweight
approach to technical risk estimation via probabilistic impact analysis. Tech.
rep. 2006-817-10, Computer Science, Univ. of Calgary, 2006.

[27] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting source
code changes by mining change history.IEEE Trans. Softw. Eng.,
30(9):574–586, 2004.

[28] L. A. Zadeh. Fuzzy sets.Information and Control, 8(3):338–353, 1965.
[29] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Mining version

histories to guide software changes.IEEE Trans. Softw. Eng., 31(6):429–445,
2005.

104

Fine Grained Indexing of Software Repositories to Support
Impact Analysis

Gerardo Canfora
Research Centre on Software Technology

Department of Engineering - University of Sannio
Viale Traiano - 82100 Benevento, Italy

canfora@unisannio.it

Luigi Cerulo
Research Centre on Software Technology

Department of Engineering - University of Sannio
Viale Traiano - 82100 Benevento, Italy

lcerulo@unisannio.it

ABSTRACT
Versioned and bug-tracked software systems provide a huge
amount of historical data regarding source code changes
and issues management. In this paper we deal with im-
pact analysis of a change request and show that data stored
in software repositories are a good descriptor on how past
change requests have been resolved. A fine grained analysis
method of software repositories is used to index code at dif-
ferent levels of granularity, such as lines of code and source
files, with free text contained in software repositories. The
method exploits information retrieval algorithms to link the
change request description and code entities impacted by
similar past change requests. We evaluate such approach on
a set of three open-source projects.

Categories and Subject Descriptors
H.3.1 [Information storage and retrieval]: Content Analy-
sis and Indexing; D.2.7 [Software Engineering]: Distrib-
ution, Maintenance, and Enhancement

General Terms
Measurement, Experimentation

Keywords
Mining Software Repositories, Impact Analysis

1. INTRODUCTION
CVS and Bugzilla are two tools for configuration manage-

ment used with success by the open source community for
sharing knowledge. The quality of data, in particular free
text, such as bug comments, bug descriptions, and feature
proposal definitions, is a critical need in an environment
in which no people meetings, no phone calls, and no coffee
break discussions are possible [8]. This leads to consider such
software repositories interesting data sources, useful for de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

veloping text mining techniques to assist project managers
and developers in their maintenance activities.

Natural language is widely used in many software engi-
neering artifacts and it is not unusual to find in the liter-
ature models based on text mining techniques, information
retrieval algorithms, and natural language processing ap-
proaches. In [1] a probabilistic information retrieval model
has been used to map source code artifacts with documen-
tation. In [14], and [19] text mining techniques have been
used in free text contained in software repositories for min-
ing, respectively, concept keyword, and project information.

In this paper we take advantage of free text stored in soft-
ware repositories to build a textual representation of code
entities at different levels of granularity, such as lines of code
and source files. This can help in the problem of impact
analysis, that is the identification of the work products af-
fected by a proposed Change Request (CR), either a bug
fix or a new feature request. Developers can know what are
the code entities he/she should work on to resolve a given
change request. Project managers can have an estimation
of what are the impacted code entities in the next release,
useful to focus testing effort.

The method has been introduced in [3] considering a level
of granularity restricted to source files. In a set of four
case studies, we obtained a precision that ranges between
30% and 78%. In this paper we consider a finer level of
granularity, lines of code, and we show that this introduces
an improvement at least of 10%, at the cost of spending
more time and space for the index.

The paper is organized as follows: next section provides
an overview about related work in the field of impact analy-
sis; section three describes the bug resolution process gen-
erally adopted by the open source community and what are
the free text left by developers; section four introduces the
concept of line history table showing how changes at line-of-
code level can be recovered from a CVS repository; section
five introduces the approach of impact analysis; section six
shows the application and validation of the approach in three
case studies; the final section concludes the paper with open
issues and future works.

2. RELATED WORK
Traditionally, impact analysis has been faced by static

analyzing the product [2]. Many approaches are based on
traceability analysis and dependence analysis. Traceabil-
ity analysis identifies affected software entities using explicit
traceability relationship. Some methods use a traceability
matrix to represent relationships and the impacted objects

105

are inferred by computing the transitive closure of the ma-
trix. Dependence analysis attempts to assess the effects of
a change based on semantic dependencies between program
entities; a technique is to use static and/or dynamic slic-
ing [11]. Expert judgement and code inspection are also
used; however, expert predictions have been shown to be
frequently incorrect [12], and source code inspection can
be prohibitively expensive [15]. The availability of data
on software process, such as those deriving from software
and change repositories, can provide new opportunities for
impact analysis. In particular, approaches to predict the
impact and propagation of changes can be found in [20,
18]. They use heuristics, such as historical co-change and
co-authorship, to derive the set of impacted source file or
program entities. A method to evaluate the performance
of change propagation heuristics has been introduced in [9].
These methods predict the impacted files starting from a
given initial source file, while the approach we present in
this papers starts from a change request description.

3. FREE TEXT IN SOFTWARE
REPOSITORIES

The resolution of a new CR, in many open source projects
tracked by Bugzilla and CVS, usually follows a very simple
workflow. A reporter proposes a new CR that can be a bug
he/she discovered or an enhancement feature he/she likes to
suggest. The CR is stored in the new CR database, after
a validation performed by the maintainer of the project to
confirm it exists. A developer that has dealt with similar
CRs in the past has a wide knowledge of the source code
involved and can easily locate the code entities that should
be changed. Otherwise, if he/she does not have such knowl-
edge, it is usual to ask for the help of other developers that
have resolved similar problems in the past. It is not rare to
find in the discussion comments of a CR, topics regarding
similar past behaviors resolved in other CRs. An assigned
to relationship links the developer with the CR. The resolu-
tion of the CR evolves to a fixed CR with a commit, in the
CVS database, of the source code changes that resolves the
CR (impact relationship). This relation does not exist in
Bugzilla database but, as suggested in [6], it can be derived
because usually developers keep track of the impacted files
by inserting in the CVS commit comment the id number
of the CR. A resolved by relationship links the developer,
author of the resolution change, and the fixed CR.

This process involves a lot of information both structured
and not structured, e.g. composed of free text. A file re-
vision is composed by a set of fields: revision, is a number
that increases when new changes are committed by the de-
veloper; date, is the date and time of check-in; author, is an
identificator of the person who did the check-in; state as-
sumes one of the following values: ‘exp’ means experimental
and ‘dead’ means that the file has been removed; lines, the
number of lines added and deleted with respect to the pre-
vious version of the file; and a final block of free text that
contains informal data entered by the developer during the
check-in process.

A CR is in many cases represented in XML and it is en-
closed generally in a bug or issue tag containing: bug-id, a
unique identifier assigned by Bugzilla; creation-ts, the date
and time of CR creation; short-desc, a short description;
product, the product name; component, the component of

r1r0 r2 r3 r4 ri

r11 r1k

r31 r3j

r1km

Figure 1: Source file revisions graph

Table 1: Line history table
r1 ... rijk...l−1 rijk...l line #

... 1

... 2
...

... n

the system; reporter, who has submitted the CR; assigned-
to, who was assigned the CR for resolution; and long-desc,
a structure comprising a long description of the CR, thetext,
who submitted it, who, and when, bug-when.

4. FINE GRAINED ANALYSIS OF
CVS REPOSITORIES

CVS handles revisions of textual files by storing the dif-
ference between subsequent revisions in a repository. It pro-
vides only information on files and differences, but not which
code entities have been changed. For an analysis of fine-
grained entities, another preprocessing step is required: each
revision is compared with its predecessor and the changes are
mapped to entities. In [21] syntactic entities, such as func-
tions, methods, and variable declarations have been consid-
ered. In this paper we refer to lines of code entities and
recover the history of source code modification in terms of
lines that have been added, changed, and deleted during the
evolution of a source file. In doing that we will introduce
the concept of line history table as a tool to visualize source
file evolution at the line-level granularity. A similar concept
has been introduced in [4] for different purpose.

Figure 1 shows a typical source file revisions graph with
different development trunks. Each revision is identified
with a sequence of numbers positions: ijk...l, in which the
last, l, is incremented by one every time a new revision is
committed. Revision r0 represents the empty file. A de-
velopment trunk can be started from every revision and at
some point it can be merged to the trunk from which it de-
rives. When a new development trunk starts the revision
identifier is incremented with another number position at
the end, initially equal to 1.

Each revision is compared with its predecessor by using
the diff tool. If a revision is a merge of multiple predeces-
sors, it should get a special treatment, while a revision with
no predecessors is compared against an empty file.

A line history table depicts a particular revision rijk...l

and contains a row for each of its source line, and a number
of column for all previous revisions belonging to the path
that reaches the revision r0 (table 1). For example, the
line history table of revision r31 contains the columns: r1,
r2, r3, and r31. If merges will not be considered for each

106

� �� � �� � �� � ��

�

�

� �

�

� �

	

� �

� �

� �

	

�

� ��

� ��

� �

� �

�

�

�

�

�

���

���

���

� ��

Figure 2: Revisions example

revision, only one line history table can exist. The i-th row
of the table shows the history of the i-th line of the revision
by using a marker, ‘a’ or ‘c’, in the column corresponding to
the revision the line has been respectively added or changed.
Some constrains hold for the relative position of markers:

• a line is added to revision only once, then each row
contains one, and only one ‘a’;

• a line can be changed only if it has been added in a
previous revision, then in each row, ‘a’ precedes each
changes ‘c’.

A line history table can be built from the output of a diff
command. When comparing two files, diff finds sequences
of lines common to both files, interspersed with groups of
differing lines called hunks [13]. There are many ways to
match up lines between two given files. The algorithm inside
diff tries to minimize the total hunk size by finding large
sequences of common lines interspersed with small hunks of
differing lines.

A diff command is performed between two revisions, called
the right and the left revision and the output of a diff com-
mand is a sequence of tuples x, yTw, z, in which x, y and
w, z are two line number intervals of respectively the left
and right revision, and T can be: a, c, or d which means
respectively that the left interval has been added, changed,
or deleted in the right interval. The column ri of a line
history table of revision ri+k is computed from the output
of a diff command performed between revisions ri−1 and ri.
Each right interval is translated to line numbers of revision
ri+k by examining what happens to this interval in each
subsequent revision ri+j for j = i + 1, ..., k.

Table 2 shows the output of a diff command for four re-
visions performed on a text file depicted in figure 2. The
first revision (1.1) contains three lines. The second revision
(1.2) adds two more lines on the top and changes the third
line of the previous revision. The third revision (1.3) adds
a new line in third position and changes the two lines that
follows. The last revision (1.4) deletes the first two lines and
changes the three lines that follows. Revision 1.0 means the
empty file.

Table 4 shows the line history table of revision 1.4. Diff
information between revision 1.0 and 1.1 shows an add of
the first three lines (0a1,3). The add range will change if
we look what happens in subsequent revisions 1.2, 1.3, and
1.4. In revision 1.2, as two more lines are added to the top
(0a1,2), the range is shifted from 1,3 to 3,5. In revision 1.3,

Table 2: Diff information between revisions
rev1 rev2 diff
1.0 1.1 0a1,3

1.1 1.2 0a1,2

3c5

1.2 1.3 2a3

3,4c4,5

1.3 1.4 1,2d0

3,5c1,3

Table 3: Line history table of revision 1.3
1.1 1.2 1.3 line #

a 1
a 2

a 3
a c 4
a c 5
a c 6

as one line is inserted in position 3 (2a3), a shift of size one
places the lines in positions 4 to 6. In revision 1.4 two lines
have been deleted and the final line positions are shifted up
in the range 2,4 as shown in the first column of table 4.
Other columns are computed in a similar way by shifting up
and down line positions in order to take into account line
additions and deletions in subsequent revisions. In this way,
we obtain the diff information for each revision translated to
line positions relative to the reference revision. Line changes
are slightly different if the reference revision is 1.3, as shown
in table 3.

In this example, for the purpose of simplicity, we have not
considered cases in which the subsequent add and delete are
inside the range to be transformed, nor the case in which
changes have different left and right range sizes. They can
be modeled by considering a range split in the first case
and by transforming the change in an add/del + change
operation in the second case. The add/del are computed in
order to have change subpart of the same size for left and
right ranges.

A line history table can be used in a number of ways.
Given a system release, the line history table of each re-
visions belonging to that release can be computed. As an
example, for each source line, the number of past revisions
until its last change is an indicator of its age, while the num-
ber of changes explains its stability.

In the context of this paper we are interested to use the
line history table of the current system release, and repre-
sent each line of code with free text related to revisions in
which the line has been added, or changed. This comprises
revision comments and short and long descriptions of CRs
that impact those revisions.

Table 4: Line history table of revision 1.4
1.1 1.2 1.3 1.4 line #

a c 1
a c c 2
a c c 3
a c 4

107

5. IMPACT ANALYSIS APPROACH
Our approach to impact analysis is shown in figure 3. A

descriptor builder process links free text contained in soft-
ware repositories with source code entities and an index-
ing process generates the index used by an information re-
trieval algorithm to retrieve the ranked list of code enti-
ties impacted by a new CR. The hypothesis is that revision
comments and impacted CRs are a good descriptor of code
entities, such as source files and lines of code, to support im-
pact analysis of new CRs. This is granted by the fact that
CVS and Bugzilla are extensively used as tools for knowl-
edge sharing during the software development process with
textual data of acceptable quality. We use textual similar-
ity to compute the similarity between a new CR descriptor
(i.e. short-desc, or short-desc + long-desc) and the set of
source code entities descriptors. The most similar code en-
tities are retrieved and presented to the developer as a first
ranked list of probable impacted code entities from which
change propagation can start. Textual similarity is a criti-
cal part of our approach. The Information Retrieval com-
munity dealt with text similarity for a long time. Given a
set of text documents and a user information needs repre-
sented as a set of words, or more generally as free text, the
information retrieval problem is to retrieve all documents
relevant to the user [17]. In information retrieval, queries
and documents are described by a set of index terms. Let
T = {t1, t2, . . . , tn} denotes the set of term used in the col-
lection of documents. Both a document d and a query q
are represented as a vector (x1, x2, . . . , xn) with xi = 1 if ti

belong to the document/query and xi = 0 otherwise. In our
approach we have used a probabilistic information retrieval
model in which the relevance of a document with respect
to a query is computed by evaluating P (R|d, q), that is the
probability that a given document d is relevant to a given
query q. Different probabilistic models have been proposed
in literature to evaluate this probability. We have used the
model introduced in [10]. It assumes that each term is as-
sociated with a topic, and that a document may be about
the topic, or not. Statistic measures about the term occur-
rences in documents are used to estimate the probability. In
particular, a document d is scored with respect to a query q
by using the following scoring function:

S(d, q) =
X
t∈q

W (t) (1)

that sums the weight of each query term with respect to
the document d on the basis of a weighting function W . An
overview of weighting functions can be found in [5]. We have
used the following [10]:

W (t) =
TFt(k1 + 1)

k1

�
(1− b) + b DL

AV DL

�
+ TFt

log
N

NDt

where TFt is the frequency of term t in the document, DL
is the document length (i.e. number of terms), AV DL is the
average document length in the collection, N is the number
of documents in the collection, and NDt is the number of
documents in which the term t appears. The constant k1

determines how much the weight reacts to increasing TFt,
and b is a normalization factor. We have used the values of
k1 = 1.2 and b = 0.75, which are recommended values for
generic English text.

The vector representation is built through an indexing
process composed by a number of standard steps usually
performed to improve the retrieval performance. The first
step, term tokenizer, regards the subdivision of free text in a
sequence of index terms. A token is a sequence of alphanu-
meric characters separated by non-alphanumeric characters.
In our case we have discarded tokens consisting only of dig-
its. The second step, stemmer, serves to lead a term to its
root. For example verb conjugation is led to the infinitive
verb, plural is led to singular, and so on. Terms are stemmed
in order to collapse terms with the same meaning into a sin-
gle term. In our case we have used the Porter stemmer
algorithm for English [16]. The third step, stopper, serves
as a filter of common words that are not discriminant for the
document. We have used a common stop word vocabulary
used in the context of English text retrieval enriched with
a set of words picked up from the software system domain.
For example, we have discarded words such as bug, feature,
and words related to the system under consideration such
as argouml, gedit, and so on. The set of so obtained terms
are counted for each document and stored within the doc-
ument identifier in two data structures, namely direct and
inverted indexes. The first stores term occurrences within a
document, while the second stores term occurrence among
the collection.

In the next two subsections we consider the descriptor
building process of code entities at two different levels of
granularity, source files and lines of code, and in the next
section we show that indexing finer grained code entities
gives, in most cases, a better performance in retrieving the
impacted source files. Moreover, fine grained indexing can
give more rich information as a result because, within the
source file, the set of impacted lines of code is also returned.

5.1 File indexing and file retrieval
Source files indexing is performed on descriptors built for

each source file belonging to a system release. A source file
descriptor, D(sf), is defined as:

D(sf) =
X

cr∈impact(sf)

D(cr) +
X

r∈revision(sf)

D(r)

Where D(cr) is the descriptor of the change request cr
that impact the source file sf obtained by the concatenation
of its short and long descriptions; D(r) is the descriptor of
the revision r of the source file sf obtained from its commit
comment; and + is the operator of string concatenation.

Source file retrieval is performed by computing the score
value of each source file sf with respect to the new CR
descriptor by using the equation 1, S(sf, CR). The set of
source files in descending order with the score value is re-
turned to the user. Source files with a score value less than
a threshold constant t are discarded, usually t = 0.

5.2 Line of code indexing and file retrieval
Lines of code indexing is performed on descriptors built

for each line of code belonging to each source file of a system
release. A line of code descriptor, D(lc), is defined as:

D(lc) =
X

cr∈impact(lc)

D(cr) +
X

r∈revision(lc)

D(r)

Where D(cr) is the descriptor of the change request cr

108

FIXED

CR

NEW

CR

BUGZILLA TRACKING

SYSTEM

WORK

FILE
REVISION

1 *

CVS VERSIONING

SYSTEM

1*

DESCRIPTOR

BULDER

RANKED LIST

OF IMPACTED

CODE ENTITIES

Developer

User

NEW CHANGE

REQUEST (BUG or

NEW FEATURE)

INDEXING

PROCESS

impact

code entities

INDEX ?

Figure 3: Impact analysis process

that impact the line of code lc; D(r) is the descriptor of
the revision r in which the line of code lc has been added
or changed; and + is the operator of string concatenation.
While impact(sf) and revision(sf) can be derived directly
from software repositories, those relative to a line of code,
impact(lc) and revision(lc), can be derived by using the line
history table of the current system release and considering
only those revisions in which the line has been added or
changed.

Since, impact(lc) ⊆ impact(file(lc)), and revision(lc) ⊆
revision(file(lc)), then D(lc) ⊆ D(file(lc)), where file(lc)
is the source file lc belongs to. When indexing the line-of-
code level, the score value of each line, lc, with respect to the
new CR descriptor is computed by equation 1, S(lc, CR).
We score a source file, sf , by computing the maximum score
of lines belonging to it.

S(sf, CR) = MAX
lc∈sf

(S(lc, CR))

Other score functions can be defined but this one has given
good results. Lines of code indexing is more expensive, in
space and time, than source file indexing, by a factor de-
pending on the average length of source files.

5.3 Tool support
We have developed an Eclipse plug-in, named Jimpa, in

order to support both indexing and source file retrieval.
All steps are completely automated, including the download
from the CVS and Bugzilla repositories. As shown in figure
4, the user can write a short explanation of the impacted
source files he/she wants to search for. The user can choose
the index to use, either fine or coarse grained, respectively
lines of code and source files. The search is performed among
the current project and the set of source files, ranked by their
relevance with change request description, is returned by the
search engine and shown in the bottom. The list shows, for
each source file, the project relative path location and the
relevance weight for the change request description. For fine
grained index, the set of finer code entities, such as ranges of
impacted lines of code, are shown within the source file. The
tool provides the support for setting information retrieval
properties such as stop word list, stemmer algorithm, and
fields to be included or excluded from the indexing process.
Moreover, parameters to access a Bugzilla site can be set in
the preference dialog of each Eclipse project. Jimpa runs
under Eclipse 3.1 and is hosted on an Eclipse update site at
the following URL: http://cise.rcost.unisannio.it/updates/.

Figure 4: Tool snapshot

Table 5: Open-Source projects
project files lines lines/files fixed CRs age

Gedit 117 47913 409.5 116 9 years

ArgoUML 1538 272076 176.9 670 7 years

Firefox 89 42580 467.4 591 4 years

6. CASE STUDY
We have applied the impact analysis approach in three

case studies with different characteristics (Tab. 5). The
first, Gedit, is a general purpose text editor of the GNOME
desktop environment written in C. The second, ArgoUML, is
an UML modeling tool written in Java. The third, Firefox,
is an Internet browser written in C++.

The results have been assessed using two widely accepted
information retrieval metrics, namely, Precision and Recall
[17]. Precision is the ratio between the number of relevant
documents retrieved for a given query and the total number
of documents retrieved for that query. Recall is the ratio
between the number of relevant documents retrieved for a
given query and the total number of relevant documents for
that query. In our case study recall and precision indicates
how many of the right impacted files have been correctly
predicted (recall) and how many of the predicted impacted
files are right (precision). We use the same methodology
used for evaluating an information retrieval algorithm, that

109

-

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

- 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

recall

pr
ec

is
io

n

source file index

line of code index

1

2

3

4
5

6
7

100 100

1

2

3
4

5

6
7

Figure 5: Gedit results

-

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

- 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

recall

p
re

ci
si

on

source file index

line of code index

1

2

3

4
5

6
7

100
100

1
2

3

4

5

6

7

Figure 6: ArgoUML results

is, the retrieved ranked list of documents is considered at
different cut levels [17]. A cut level N is the list of the first
N ranked documents. For each cut level the behavior of
precision and recall is analyzed and traced on a graph.

We have conducted the evaluation by using the leave-one-
out assessment technique [7]. For a given CR we have pre-
dicted the set of impacted files by using an index without
descriptors regarding that CR. The predicted set of files is
then compared with the oracle set, that is the files actually
impacted by that CR, recovered by considering the pres-
ence of the Buzilla id number in the revision comments of
the files [6]. We think this is a good oracle as CRs man-
aged in Bugzilla follow basically some accepted guidelines,
and one of these is to indicate in the check-in comment the
Bugzilla id that identifies the relevant CR.

The performance has been evaluated by using both source
file and line of code indexes. Figures 5, 6, and 7 show the
results for each of the three systems considered. The curves
have been traced by observing the top 100 files ranked by the
scoring function and averaging the precision and recall on
the number of CRs considered for each system. Each figure
contains two curves, relative to source file index and line of
code index. A curve contains 100 points, one for each cut
level starting from 1 to 100. The first set of points should
be read as a measure of overall precision, while the last set
of points as a measure of overall recall.

Indexing lines of code produces improvements ranging be-

-

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

- 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

recall

pr
ec

is
io

n

source file index

line of code index

1

2

3 4

5

6

7

100 100

1
2

3

4
5

6

7

Figure 7: Firefox results

Table 6: Time and space needed to build the indexes
project source file index line of code index

time space time space

Gedit 2 sec 360 KB 59 sec 8.5 MB

ArgoUML 19 sec 1.82 MB 390 sec 52.5 MB

Firefox 3 sec 300 KB 63 sec 3.3 MB

tween 10% and 20% of top 1 precision for each case consid-
ered. Top 100 recall is better for source file index in two
cases, ArgoUML and Firefox. An evident improvement is
reported for ArgoUML for which the top 1 precision is al-
most 20% better for lines of code index than for source files
index. Is this related to the fact that ArgoUML is written
in Java?

Why different performance behaviors occurs for different
systems needs to be further investigated. For sure it de-
pends on how software repositories are used in software
projects. Usually, projects share a common usage prac-
tice driven by the configuration management system but
with a some slightly deviation driven by the members of the
project.

Table 6 shows the time and the disk space needed to build
both source file and line of code indexes for each case consid-
ered. Data explains that the increment of the cost, in terms
of time and space required to index lines of code, grows per-
centually more than the increment of performance gained.
However this is not a drawback at all because the indexing
process takes place only one time to set-up the environment
and successive index updates are performed incrementally.
Regarding file retrieval response time there is a no evident
cost increment as shown in table 7.

7. CONCLUDING REMARKS
Software and change repositories give new opportunities

to support the software development process. In this paper

Table 7: Average file retrieval response time
project source file index line of code index

Gedit 16.2 msec 31.1 msec

ArgoUML 266.3 msec 375.5 msec

Firefox 15.1 msec 30.4 msec

110

an approach to predict impacted files from a change request
definition has been presented. The approach exploits infor-
mation retrieval algorithms performed on code entities, such
as source files and lines of code, indexed with free text con-
tained in software repositories. We show, in particular that
indexing fine grained entities, improves precision, at the cost
of indexing a much higher number of code entities.

The empirical validation conducted on three open source
projects has given promising results. However, quality of
text and project maturity are two factors that strongly im-
pact the performance of the approach. Sometime CVS com-
ments are used for communication rather than for descrip-
tion purpose and in almost all projects there is an initial
period of transition that generates noise in both CVS and
Bugzilla repositories. Indexes can be build, effectively, only
for mature projects for which a huge amount of historical
data is available. For young and immature projects this
approach fails.

We feel that a direction of improvement should be the
introduction of a filter that selects the text to index. The
filter should be able to select only the text that well de-
scribes the indexed code entities. As a very simple example,
CVS comments regarding maintenance and merged revisions
should be discarded because, usually, they have not useful
information for indexing.

The open source community uses other repository for knowl-
edge sharing, such as: mailing lists, newsgroups, and IRC
conversations. They are rich of free text and it should be
interesting to investigate how this information can be used
in conjunction or as an alternative to CVS and Bugzilla.

8. REFERENCES
[1] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia,

and E. Merlo. Recovering traceability links between
code and documentation. IEEE Trans. Softw. Eng.,
28(10):970–983, 2002.

[2] R. S. Arnold and S. A. Bohner. Impact analysis -
towards a framework for comparison. In ICSM ’93:
Proceedings of the Conference on Software
Maintenance, pages 292–301. IEEE Computer Society,
1993.

[3] G. Canfora and L. Cerulo. Impact analysis by mining
software and change request repositories. In
METRICS ’05: Proceedings of the 11th IEEE
International Software Metrics Symposium. IEEE
Computer Society, 2005.

[4] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang,
S. Zhang, and A. Michail. CVSSearch: Searching
through source code using CVS comments. In ICSM
’01: Proceedings of 17th IEEE International
Conference on Software Maintenance, page 364. IEEE
Computer Society, 2001.

[5] F. Crestani, M. Lalmas, C. J. V. Rijsbergen, and
I. Campbell. Is this document relevant?...probably: a
survey of probabilistic models in information retrieval.
ACM Comput. Surv., 30(4):528–552, 1998.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In ICSM ’03: Proceedings of 19th
IEEE International Conference on Software
Maintenance, Amsterdam, Netherlands, Sept. 2003.
IEEE Computer Society.

[7] K. Fogel and M. Bar. Cross-Validatory Choice and
Assessment of Statistical Predictions (with
Discussion), volume 36. J. the Royal Statistical Soc.,
1974.

[8] K. Fogel and M. Bar. Open Source Development with
CVS. Coriolis, 2001.

[9] A. E. Hassan and R. C. Holt. Predicting change
propagation in software systems. In ICSM ’04:
Proceedings of the 20th IEEE International
Conference on Software Maintenance, pages 284–293,
Washington, DC, USA, 2004. IEEE Computer Society.

[10] K. S. Jones, S. Walker, and S. E. Robertson. A
probabilistic model of information retrieval:
development and comparative experiments. Inf.
Process. Manage., 36(6):779–808, 2000.

[11] M. Kamkar. An overview and comparative
classification of program slicing techniques. J. Syst.
Softw., 31(3):197–214, 1995.

[12] M. Lindvall and K. Sandahl. How well do experienced
software developers predict software change? J. Syst.
Softw., 43(1):19–27, 1998.

[13] W. Miller and E. W. Myers. A file comparison
program. Software Practice and Experience,
15(11):1025–1040, 1985.

[14] M. Ohba and K. Gondow. Toward mining ”concept
keywords” from identifiers in large software projects.
In IEEE 27th International Conference on Software
Engineering - The 2nd International Workshop on
Mining Software Repositories, pages 1–5, New York,
NY, USA, 2005. ACM Press.

[15] S. L. Pfleeger. Software Engineering: Theory and
Practice. Prentice-Hall, Upper Saddle River, NJ, 1998.

[16] M. F. Porter. An algorithm for suffix stripping.
Morgan Kaufmann Publishers Inc., 1997.

[17] B. Ribeiro-neto and Baeza-yates. Modern Information
Retrieval. Addison Wesley, 1999.

[18] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C.
Chu-Carroll. Predicting source code changes by
mining revision history. IEEE Transactions on
Software Engineering, 30:574–586, Sept. 2004.

[19] A. T. T. Ying, J. L. Wright, and S. Abrams. Source
code that talks: an exploration of eclipse task
comments and their implication to repository mining.
In IEEE 27th International Conference on Software
Engineering - The 2nd International Workshop on
Mining Software Repositories, pages 1–5, New York,
NY, USA, 2005. ACM Press.

[20] T. Zimmermann, P. Weisgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. In ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering,
pages 563–572. IEEE Computer Society, 2004.

[21] T. Zimmermann and P. Weißgerber. Preprocessing
CVS data for fine-grained analysis. In IEEE 26th
International Conference on Software Engineering -
The 1st International Workshop on Mining Software
Repositories, pages 2–6, 2004.

111

Are Refactorings Less Error-prone Than Other Changes? ∗

Peter Weißgerber
University of Trier

Computer Science Department
54286 Trier, Germany

weissger@uni-trier.de

Stephan Diehl
University of Trier

Computer Science Department
54286 Trier, Germany

diehl@acm.org

ABSTRACT
Refactorings are program transformations which should pre-
serve the program behavior. Consequently, we expect that
during phases when there are mostly refactorings in the
change history of a system, only few new bugs are intro-
duced. For our case study we analyzed the version histo-
ries of several open source systems and reconstructed the
refactorings performed. Furthermore, we obtained bug re-
ports from various sources depending on the system. Based
on this data we identify phases when the above hypothesis
holds and those when it doesn’t.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.8 [Software Engineering]: Metrics

General Terms
Algorithms, Management, Measurement

Keywords
Refactoring, software evolution, reverse engineering, and re-
engineering

1. INTRODUCTION
Changes to source code can be roughly categorized as bug

fixes, feature extensions, and refactorings. Intuitively, we
expect that feature extensions are more error-prone than
bug fixes or refactorings. By definition, a refactoring should
not alter the program behavior at all and, thus, not intro-
duce any new bugs. Thus, during phases in the program de-
velopment where refactorings prevail, we would expect that
less errors are introduced than in other phases. In this pa-
per we present the results of a first case study which relates

∗(Produces the permission block, and copyright informa-
tion). For use with SIG-ALTERNATE.CLS. Supported by
ACM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

the percentage of refactorings per day to the ratio of bugs
opened within the next 5 days.

The remainder of this paper is organized as follows: In
Section 2 we describe how we reconstruct refactorings and
other changes from version archives. Then, we explain in
Section 3 how we relate these changes to bugs that have
emerged in the lifetime of a software system. For the case
study in Section 4 we applied our technique to three open-
source systems. Section 5 discusses related work and Section
6 concludes this paper.

2. OBTAINING REFACTORINGS
In this section we briefly explain our technique to extract

refactorings from software version archives such as CVS. The
details of this technique can be found in [5].

A prerequisite for detecting refactorings that occurred
during the evolution of a software system is to collect in-
formation about all changes that have been stored in the
archive. After that, these change can be analyzed to de-
cide if they are a refactoring, part of a refactoring or no
refactoring at all.

As we focus in this paper on the question of whether refac-
torings are less error-prone than other changes, we have to
compute the ratio of refactorings to other changes. In partic-
ular, this allows us to look for those days (or weeks, months,
. . .) which had a high refactoring ratio.

2.1 Recovering Basic Change Information
To recover the changes performed to a software system

during its evolution we analyze the software archive as pre-
sented in [9]. As a result we obtain the following informa-
tion:

• Versions: A version describes one revision of one file
in the software archive, for example the revision 1.2 of
the file src/Main.java. For each version we extract
the following information: the filename and the revi-
sion number, the revision number of the predecessor
version (i.e. the version of the same file that has been
changed to create this particular version), the devel-
oper who checked-in the version into the archive, the
log message and the timestamp of the check-in, the
state of the version (e.g., “dead” for versions that are
not used anymore), the numbers of added, altered, and
deleted lines, and the version text.

• Transactions: A transaction is defined as the set of
versions that have been checked-in into the version
archive by an author in one commit operation. As

112

CVS splits each commit operation containing multiple
versions into separate check-ins for each version, we
use a sliding time window heuristic to recover transac-
tions quite precisely. For every transaction recovered
this way, we additionally store the timestamp of the
start, the length, as well as the committer and the log
message of the transaction.

For our study we use the transactions as a heuristics which
changes have been performed at the same time and, thus,
might be related to each other. For our purpose, we are
not interested in the numbers of the lines that have been
changed, but in the names of the affected code-blocks —
these are classes, fields and methods. Figure 1 gives an
overview of the overall process of computing these numbers
which is described in the following sections.

Software archive

Transactions

Code

blocks

new

altered

deleted

Refactorings-

reconstruction

engine

Versions

Refactoring

candidates

Non-overlapping

disambiguous

refactoring

candidates

� #CB/day

�
#RC/day

#RB/day

Software archive

TransactionsTransactions

Code

blocks

Code

blocks

new

altered

deleted

Refactorings-

reconstruction

engine

VersionsVersions

Refactoring

candidates

Refactoring

candidates

Non-overlapping

disambiguous

refactoring

candidates

Non-overlapping

disambiguous

refactoring

candidates

� #CB/day

�
#RC/day

#RB/day

Figure 1: Computation of Changed Blocks and
Refactorings

2.2 Finding Changed Code Blocks
To determine which code blocks have been changed in

a version with respect to its predecessor, we first have to
compute the blocks which are actually contained in it. For
this we compute for each version v the following sets:

• the set Cv of classes / interfaces (identified by their
fully-qualified class name),

• the set Fv of fields (identified by their signature, con-
sisting of name and type),

• and the set Mv of methods (identified by their signa-
ture consisting of name, parameters, and type).

For each block we additionally store the start line and the
end line. This allows us to reconstruct the nesting of the
symbols in a file, and to distinguish methods that have the
same signature but belong to different classes defined in the
same file.

Let Bv = Cv ∪ Fv ∪ Mv the set of blocks contained in
version v.

Next, for each version v we compare its set of code blocks
with the set of code blocks for the predecessor version v′

(for versions that have no predecessor, we take the empty
version as v′, thus we compare with the empty set). Thus
we compute the following sets:

• Bv − Bv′ : new code blocks, i.e. blocks that only exist
in the newer version

• Bv ∩ Bv′ : common code blocks, i.e. blocks that exist
in both versions

• Bv′ − Bv: deleted code blocks, i.e. blocks that only
exist in the predecessor version

Obviously, every new code block and every deleted code
block is affected by the transition from v′ to v. Moreover,
common code blocks may also have been altered and, thus,
affected by the transition from v′ to v.

In our current implementation we use a light-weight regular-
expression based parser to compute the code blocks for JAVA
files, and perform a textual comparison to find out if a code
block has been altered in the transition from version v′ to its
subsequent version v. Another possibility to get this infor-
mation is to use the ECLIPSE [8] structural compare plug-in
which is able to identify and compare blocks for several file
types and programming languages.

2.3 Refactorings
In the previous section we have explained how we extract

information about changed JAVA code blocks (classes, meth-
ods, field). As we have also recovered transactions we now
know which blocks have been affected by changes performed
at the same time. Next, we want to determine which of these
changes are refactorings, and thus, which of the changed
blocks are affected by refactorings.

Our refactoring reconstruction engine [5] takes the infor-
mation about changed blocks and transactions as input and
yields for each transaction a set of refactorings. We call
these refactorings refactorings candidates, to indicate that
they have possibly been performed in this transaction. In
this paper, we address refactoring kinds for which candidates
can be computed by comparing the signatures and contents
of added and removed code blocks. Other refactoring kinds
require more semantic information like type inferences or
the class hierarchy. For this study we compute refactoring
candidates of the following kinds:

• Move/Rename class/interface c1 =⇒ c2, where c1 is
the old fully-qualified class name and c2 the new one.

• Move field (f, c1) =⇒ (f, c2), where f is the field sig-
nature, c1 is the fully-qualified name of the old class of
the field, and c2 is the fully-qualified name of its new
class.

• Move method (m, c1) =⇒ (m, c2), where m is the
method signature, c1 is the fully-qualified name of the

113

old class of the method, and c2 is the fully-qualified
name of its new class.

• Rename method m1 =⇒ m2, where m1 is the old sig-
nature of the method and m2 the new one.

• Hide/Unhide method m, where m is the signature of
the method that has been hidden respectively unhid-
den.

• Add/Remove parameter to/from method m1 ⇒ m2,
where m1 is the old method signature and m2 the new
method signature.

However, in this paper we are mainly interested in how
many refactorings are performed, but not in the kind of
each refactoring. To count the number of refactorings the
following issues must be considered:

Overlapping refactorings Our refactoring reconstruction
engine both detects refactoring candidates on class
level (move/rename class/interface) as well as on a
fine-grained level (refactorings on fields and methods).
The problem with this is, that refactorings on class
level automatically include refactorings on the fine-
grained level: If a class is moved or renamed, auto-
matically all fields and methods in it are moved to the
new location and, thus, are counted. So if we counted
both refactorings candidates on class level and on the
fine-grained level, we would count some refactorings
twice. To solve this problem, we omit the class-level
refactoring candidates in our count.

Ambiguous refactorings As the refactoring reconstruc-
tion engine only yields refactoring candidates (because
it cannot decide whether a program transformation re-
ally preserves the program behavior or not), for the
same transaction several refactoring candidates may
be suggested that are ambiguous and may exclude each
other. For example, assume that the reconstruction
would suggest the following refactoring candidates:

1. Move Method (m, c1) ⇒ (m, c3).

2. Move Method (m, c1) ⇒ (m, c4).

3. Move Method (m, c1) ⇒ (m, c5).

4. Move Method (m, c2) ⇒ (m, c3).

In this example the first and fourth candidate are am-
biguous concerning the source. If both are taken into
account, this would mean that two different methods
(the one with signature m in class c1 and the one with
the same signature in c3) are moved to the same tar-
get. Although such operations are possible (the meth-
ods may have been identical) it is likely that at most
one of both candidates is correct. A similar problem
occurs with the first three candidates: There are three
alternatives to which class the method has been actu-
ally moved.

Thus, instead of counting the number of all refactoring
candidates, we compute the number of unambiguous
refactoring candidates. A conservative approximation
for this number is to take as many refactoring candi-
dates into account as there are different sources respec-
tively targets, depending on which number is smaller.

In the example above there are two different sources,
namely (m, c1) and (m, c2), and three different targets:
(m, c3), (m, c4), and (m, c5). Thus the number of un-
ambiguous refactoring candidates for this example is 2.

Number of affected blocks The number of affected blocks
of a refactoring only depends on the kind of refactor-
ing: Refactorings of kinds move field, move method,
rename method, add parameter, and remove parame-
ter affect two blocks because they change the signature
of the refactored artifact and, thus, create a new block.
In contrast, refactorings of kind hide/unhide method
do not change the signature of the refactored block
and, therefor, affect only one block.

3. RELATING REFACTORINGS TO BUGS
As the goal of this study is to see whether the common

belief, that refactorings are less risky than other changes, is
really true, we try to estimate how many issues have emerged
because of a change. To this end, we first describe how we
get information about the bugs that appeared in a software
system during its lifetime. Then we describe how we relate
changes and refactorings to these bugs.

3.1 Obtaining Bug Information
Depending on the project, information can be obtained

from the following sources:

Bug databases: The most obvious way to gather bug in-
formation is to directly access the bug database. Un-
fortunately, only project administrators have direct ac-
cess to the database, the average developer and other
people have to use a web interface to query and alter
the bug database. Querying the database for every
existing issue over the web interface can be tedious
if we want to retrieve all information available for all
bugs. However, getting an overview on the bugs is easy
using the web interface. This overview contains for ev-
ery bug at least its ID, and a hyperlink to additional
information about the bug, that can be downloaded
and parsed if needed. For SOURCEFORGE projects
the overview also includes the summary of each bug,
the date when the bug has been opened, the priority,
the status of the bug, the developer it is assigned to,
and the developer who has submitted it. In contrast,
the BUGZILLA overview does not contain the bug open
date and the submitter, but instead the severity of the
bug, the affected computer platforms, and for closed
bugs also the resolution (which may be “bugs is fixed”
or “bug report was invalid”).

Bug report mails: Bug report mails are emails that are
automatically generated and sent to the developer mail-
ing list by bug databases such as BUGZILLA or SOURCE-
FORGE when a new bug has been opened in the database
or the entry of an existing bug has been changed. A
bug report mail at least contains information about
the ID of the bug that has been altered, and a textual
description what exactly has been changed (e.g., the
bug has been resolved, or a comment has been added).

To get bug information using bug mails, one needs to
have access to the email archive of the project. For-
tunately, for most projects—especially those hosted at

114

SOURCEFORGE—these archives are freely accessible
over the web.

Recognizing the bug report mails in the mail archives
is quite simple: the sender of this mail is the bug
database and normally, the subject has a special for-
mat. For example, the SOURCEFORGE bug database
sends all its mails with the sender noreply@source-

forge.net and the subject “[project -Bugs-ID]bug

description ”.

Next, we parse the bug report mails using a regular-
expression based parser. In this work we are mainly
interested in when a bug has been opened. But other
information can also be recovered using appropriate
regular expressions.

3.2 Relating Changes and Bugs
Unfortunately, although bug information can be retrieved

from bug databases and bug report mails as described above,
there are only very few cases where the bug information
contains exact specifications about which source code change
is responsible for the respective bug. Thus, we have to use
heuristics here as well.

Our heuristics is to assume that a bug may be caused by
changes that have been done in a time window of n days
before the bug has been opened (reported).

Thus, for every day d in the lifetime of a project, we com-
pute the number of bugs #OBn

d that have been opened at
day d and the next n days.

Furthermore, we have to take into account that there are
days when there is more activity and when there is less.
As a measure for the activity we use the number of blocks
changed per day.

Thus, for every day d the number of changed blocks is
#CBd =

P
t∈Td

#CBt where Td is the set of transactions
on day d.

Instead of looking at the absolute numbers of refactorings
and bugs per day, we relate them to the number of changed
blocks. We also relate #OBn

d to the number of changed
blocks to be able to compare it with the refactoring ratio.

As the refactoring ratio is a percentage, its values are in
the range of [0, 1]. To be able to draw a single diagram
containing the refactoring ratio, as well as the number of
changed blocks and the number of bugs per block, we nor-
malize the latter two by dividing by the maximum value.

Thus, in our study we compared the following three met-
rics:

Normalized number of changed blocks:
%CBd = #CBd

#CBmax
where

#CBmax = max{#CBd|d day in the projects lifetime}.
Normalized number of bugs per changed block:

%BBn
d =

#OBn
d

#CBd#̇OBn
max

where

#OBn
max = max{#OBn

d |d day in the projects lifetime}.
Number of refactorings per changed block:

%RBd = #RCd
#CBd

where #RCd is the number of non-

overlapping, disambiguated refactoring candidates for
day d.

Project in CVS since #txns #versions #dev
ARGOUML 1998-01-26 16138 65593 42

JEDIT 2001-09-02 2141 10726 6
JUNIT 2000-12-03 832 1707 6

Figure 2: CVS data for the analyzed project
txns = transactions, dev = committers

4. CASE STUDY

4.1 The Analyzed Projects
In our case study we have applied the described techniques

to three different open source projects: JEDIT, JUNIT, and
ARGOUML. Although these projects may not be represen-
tative for all open-source projects, they are very different in
age, size, number of transactions, and number of involved
committers, as Figure 2 illustrates.

4.2 Study Settings
We applied our technique described in the previous sec-

tions to these three projects as follows: First, we computed
for each transaction the number of total changed code blocks
and the number of blocks affected by refactorings. To get
information on the level of days, we computed the sum of
the number of changed code blocks as well as of the number
of code blocks affected by refactoring for each transaction
that has been started at the same day.

Next, we collected data about how many bugs have been
opened per day for these projects. For ARGOUML a devel-
oper created bug statistics [7] and kindly provided the raw
data of these to us. For JEDIT we relied on the bug report
mails that are sent by the project’s bug database to the de-
veloper mailing list. As JUNIT does not use such bug report
mails we extracted the bug information for this project from
the SOURCEFORGE web interface.

As explained, we computed the value %BBn
d that relates

the changes of day d to bugs opened within the next n days.
Obviously, looking only at the same day would not be suf-
ficient. Thus, we decided to use a longer time window of
n = 5 which roughly corresponds to a working week.

4.3 ARGOUML
For ARGOUML Figure 3 shows for each day the normal-

ized number of changed blocks %CB, the percentage of
refactored blocks per day %RB, and the normalized number
of bugs per changed block %BB.

It can easily been seen that for most days the percentage
of refactorings with respect to all changed blocks is rather
small, interestingly there is no day where all changed blocks
are affected by refactorings. The days with the highest refac-
toring percentages are mainly between April 2005 and Oc-
tober 2005, thus we look at this period in more detail (see
Figure 5).

When we look at this figure it seems that for most days
with a high refactoring rate, the value of %BB does not
change tremendously. But, interestingly, for June 30, the
day with the overall highest refactoring rate (98.4%), it in-
creases noticeably. The log messages for the two transac-
tions performed on that day state that the undo functional-
ity is moved to a package on its own, but that a new word-
wrap feature is introduced additionally.

Another day with a noticeable refactoring rate and in-
creasing %BB is July 31. On the transactions at this day,

115

Nov 02 – May 03

0

0,2

0,4

0,6

0,8

1

1,2

1
.8

.2
0
0
2

1
.1

0
.2

0
0
2

1
.1

2
.2

0
0
2

1
.2

.2
0
0
3

1
.4

.2
0
0
3

1
.6

.2
0
0
3

1
.8

.2
0
0
3

1
.1

0
.2

0
0
3

1
.1

2
.2

0
0
3

1
.2

.2
0
0
4

1
.4

.2
0
0
4

1
.6

.2
0
0
4

1
.8

.2
0
0
4

1
.1

0
.2

0
0
4

1
.1

2
.2

0
0
4

1
.2

.2
0
0
5

1
.4

.2
0
0
5

1
.6

.2
0
0
5

1
.8

.2
0
0
5

1
.1

0
.2

0
0
5

%CB %RB %BB

Apr – Oct 05

3
0
.6

.2
0
0
5

Figure 3: Overview of values computed for AR-
GOUML

0

0,1

0,2

0,3

0,4

0,5

0,6

1.
11

.2
002

15
.1
1.2

00
2

29
.1
1.2

00
2

13
.1
2.2

00
2

27
.1
2.2

00
2

10
.1
.2

003

24
.1
.2

003

7.
2.

20
03

21
.2
.2

003

7.
3.

20
03

21
.3
.2

003

4.
4.

20
03

18
.4
.2

003

2.
5.

20
03

16
.5
.2

003

30
.5
.2

003

%CB %RB %BB

1
9
.3

.0
3

1
1
.5

.0
3

Figure 4: ARGOUML: November 2002 to May 2003

according to the log messages, the class PropPanelSignal

has been refactored, and furthermore among other things,
the developers have “implement(ed) signals and timexpres-
sions for events”. When looking at the bugs that have been
filed within the next five days we found a bug with the sum-
mary “Attributes disappear after typing an initial value”
in the component PropertyPanel, which also contains the
refactored class.

Another phase that contains many refactorings (although
the ratio is not very high for these days) is between Novem-
ber 2002 and May 2003—this phase is shown in Figure 4.
For most days with a high refactoring rate we cannot see
an effect on the normalized number of bugs per changed
block, with two exceptions: On March 19 and on May 11
we detected a high refactoring rate (39% resp. 26% of the
changed blocks affected by refactorings) but the value of
%BB increases as well. We looked in detail at these two
dates: the most noticeable specific characteristic of these
days is that they contain quite many transactions: On aver-
age between 5 and 6 transactions have been performed per
day, but on these days the transaction count has been 16
respectively 21.

0

0,2

0,4

0,6

0,8

1

1,2

1
.4

.2
0
0
5

1
5
.4

.2
0
0
5

2
9
.4

.2
0
0
5

1
3
.5

.2
0
0
5

2
7
.5

.2
0
0
5

1
0
.6

.2
0
0
5

2
4
.6

.2
0
0
5

8
.7

.2
0
0
5

2
2
.7

.2
0
0
5

5
.8

.2
0
0
5

1
9
.8

.2
0
0
5

2
.9

.2
0
0
5

1
6
.9

.2
0
0
5

3
0
.9

.2
0
0
5

1
4
.1

0
.2

0
0
5

2
8
.1

0
.2

0
0
5

%CB %RB %BB

3
0
.6

.0
5

3
1
.7

.0
5

Figure 5: ARGOUML: April to October 2003

4.4 JEDIT

0

0,2

0,4

0,6

0,8

1

1,2

0
3

.0
9

.2
0

0
1

0
3

.1
0

.2
0

0
1

0
3

.1
1

.2
0

0
1

0
3

.1
2

.2
0

0
1

0
3

.0
1

.2
0

0
2

0
3

.0
2

.2
0

0
2

0
3

.0
3

.2
0

0
2

0
3

.0
4

.2
0

0
2

0
3

.0
5

.2
0

0
2

0
3

.0
6

.2
0

0
2

0
3

.0
7

.2
0

0
2

0
3

.0
8

.2
0

0
2

0
3

.0
9

.2
0

0
2

0
3

.1
0

.2
0

0
2

0
3

.1
1

.2
0

0
2

0
3

.1
2

.2
0

0
2

0
3

.0
1

.2
0

0
3

0
3

.0
2

.2
0

0
3

0
3

.0
3

.2
0

0
3

0
3

.0
4

.2
0

0
3

0
3

.0
5

.2
0

0
3

0
3

.0
6

.2
0

0
3

0
3

.0
7

.2
0

0
3

0
3

.0
8

.2
0

0
3

0
3

.0
9

.2
0

0
3

0
3

.1
0

.2
0

0
3

0
3

.1
1

.2
0

0
3

0
3

.1
2

.2
0

0
3

0
3

.0
1

.2
0

0
4

0
3

.0
2

.2
0

0
4

0
3

.0
3

.2
0

0
4

0
3

.0
4

.2
0

0
4

0
3

.0
5

.2
0

0
4

0
3

.0
6

.2
0

0
4

0
3

.0
7

.2
0

0
4

0
3

.0
8

.2
0

0
4

0
3

.0
9

.2
0

0
4

0
3

.1
0

.2
0

0
4

%CB %RB %BB

2
0
.8

.0
2

May – Aug 02 March – June 03

Figure 6: Overview of values computed for JEDIT

Figure 6 illustrates our results for JEDIT. Again it catches
our eyes that there is no day that contains only refactorings
covered by the kinds we recognize. The highest refactoring
rate is even lower than 3

4
: it is 73.4% at August 20 2002.

We zoomed into two periods that seemed to be interesting
because there are many refactorings: Figure 7 gives a closer
look at the period between May and August 2002, while
Figure 8 shows the period between March and June 2003.
The following paragraphs describe these two phases in more
detail.

4.4.1 JEDIT refactoring phase in 2003
Let us first look at the refactoring phase in 2003 (Fig-

ure 8): It attracts attention that between April 19 and May
3 a lot of changes with a high percentage of refactorings
have been done, but no, respectively very few, new bugs
have been introduced in these days. This seems to sup-
port the thesis that refactorings are changes that are not
error-prone. We inspected the log messages given for the
concerned transactions and found out that the developers
documented mainly fixes and refactorings, but only few new
features in this phase.

There are also other days between March and June 2003
when changes with a high percentage of refactorings have
been done and no—or even a decreasing—effect on the value

116

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

01
.0
5.2

00
2

08
.0
5.2

00
2

15
.0
5.2

00
2

22
.0
5.2

00
2

29
.0
5.2

00
2

05
.0
6.2

00
2

12
.0
6.2

00
2

19
.0
6.2

00
2

26
.0
6.2

00
2

03
.0
7.2

00
2

10
.0
7.2

00
2

17
.0
7.2

00
2

24
.0
7.2

00
2

31
.0
7.2

00
2

07
.0
8.2

00
2

14
.0
8.2

00
2

21
.0
8.2

00
2

28
.0
8.2

00
2

%CB %RB %BB

1
9
.5

.0
2

2
1
.5

.0
2 2

6
.5

.0
2

3
0
.5

.0
2

4
.6

.0
2

6
.6

.0
2

1
3
.6

.0
2

2
0
.6

.0
2

2
.8

.0
3

1
3
.8

.0
3

2
0
.8

.0
3

Figure 7: JEDIT: May to August 2002

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

01
.0
3.2

00
3

08
.0
3.2

00
3

15
.0
3.2

00
3

22
.0
3.2

00
3

29
.0
3.2

00
3

05
.0
4.2

00
3

12
.0
4.2

00
3

19
.0
4.2

00
3

26
.0
4.2

00
3

03
.0
5.2

00
3

10
.0
5.2

00
3

17
.0
5.2

00
3

24
.0
5.2

00
3

31
.0
5.2

00
3

07
.0
6.2

00
3

14
.0
6.2

00
3

21
.0
6.2

00
3

28
.0
6.2

00
3

%CB %RB %BB

1
0
.3

.0
3

1
8
.3

.0
3

2
8
.3

.0
3

9
.5

.0
3 3
.6

.0
3

2
5
.6

.0
3

2
8
.6

.0
3

19.4 - 3.5.03

Figure 8: JEDIT: March to June 2003

of %BB can be observed: The respective days (March 3,
March 18, March 28) are annotated in Figure 8.

But we also found days where the refactoring percentage
%RB is rather high but the normalized number of bugs per
changed block increases nevertheless. This holds, for exam-
ple, for May 9, June 7 until June 9, and June 25 until June
28. We manually looked at the log messages of the trans-
actions performed on these days, as well as on the source
code changes. Although the refactoring percentage is high
for these days, functionality changes have been performed,
even within the blocks affected by refactorings.

4.4.2 JEDIT refactoring phase in 2002
Figure 7 shows the refactoring phase from May 2002 until

the end of August 2002. There are some days (May 21, May
26, May 30, June 13, Aug 8, Aug 13) with a high refactoring
ratio that, as expected, do not cause the normalized number
of bugs per changed block to increase noticeably.

But for four days (May 19, Apr 6, May 20, Aug 20) with
a refactoring percentage of greater than 10%, the value of
%BB increases. At the first of these dates, more than a
quarter of the changed blocks have been affected by refac-
torings. Two days later again 10% of the changed blocks
have been affected by refactorings. Nevertheless, the nor-
malized number of bugs per changed block has a peak at
these days. We looked in the log messages of the respective
transactions to find evidence for the author’s intention of
the changes and found that there has been a “display code
rewrite”, “syntax and text area reworking” and several “To-
kenMarker code refactorings” and “syntax refactoring” (all
transactions have been performed by the same developer).
Interestingly, one of the bugs that has been filed within 5

days has the summary “text area and syntax packages: Ma-
jor redraw issues”. However, the developer who commit-
ted the changes was expecting such problems: He has com-
mented the bug: ”The code in CVS is a work in progress.
It might not even compile [. . .] it might not even run. [. . .]
I’m [. . .] rewriting [. . .] the syntax highlighting code; so
problems [...] are to be expected.”

4.5 JUNIT

0,0

0,2

0,4

0,6

0,8

1,0

1,2

0
7
.1

2
.2

0
0
0

0
7
.0

2
.2

0
0
1

0
7
.0

4
.2

0
0
1

0
7
.0

6
.2

0
0
1

0
7
.0

8
.2

0
0
1

0
7
.1

0
.2

0
0
1

0
7
.1

2
.2

0
0
1

0
7
.0

2
.2

0
0
2

0
7
.0

4
.2

0
0
2

0
7
.0

6
.2

0
0
2

0
7
.0

8
.2

0
0
2

0
7
.1

0
.2

0
0
2

0
7
.1

2
.2

0
0
2

0
7
.0

2
.2

0
0
3

0
7
.0

4
.2

0
0
3

0
7
.0

6
.2

0
0
3

0
7
.0

8
.2

0
0
3

0
7
.1

0
.2

0
0
3

0
7
.1

2
.2

0
0
3

0
7
.0

2
.2

0
0
4

0
7
.0

4
.2

0
0
4

0
7
.0

6
.2

0
0
4

0
7
.0

8
.2

0
0
4

0
7
.1

0
.2

0
0
4

0
7
.1

2
.2

0
0
4

0
7
.0

2
.2

0
0
5

0
7
.0

4
.2

0
0
5

0
7
.0

6
.2

0
0
5

0
7
.0

8
.2

0
0
5

0
7
.1

0
.2

0
0
5

%CB %RB %BB

Figure 9: Overview of values computed for JUNIT

We repeated our experiments for JUNIT, the complete re-
sults are illustrated in Figure 9. Like for the other projects,
there is no day with a refactoring percentage of 100%. The
top refactoring percentage for JUNIT is even smaller than for
the other two analyzed projects: on June 25 2002 exactly 2

3
of all changed blocks have been affected by refactorings.

Although we found only refactorings at a few days, there
seem to be two phases when refactorings have taken place:
The first one between March and September 2002, and the
second one between March and October 2005.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0
1
.0

3
.2

0
0
2

0
8
.0

3
.2

0
0
2

1
5
.0

3
.2

0
0
2

2
2
.0

3
.2

0
0
2

2
9
.0

3
.2

0
0
2

0
5
.0

4
.2

0
0
2

1
2
.0

4
.2

0
0
2

1
9
.0

4
.2

0
0
2

2
6
.0

4
.2

0
0
2

0
3
.0

5
.2

0
0
2

1
0
.0

5
.2

0
0
2

1
7
.0

5
.2

0
0
2

2
4
.0

5
.2

0
0
2

3
1
.0

5
.2

0
0
2

0
7
.0

6
.2

0
0
2

1
4
.0

6
.2

0
0
2

2
1
.0

6
.2

0
0
2

2
8
.0

6
.2

0
0
2

0
5
.0

7
.2

0
0
2

1
2
.0

7
.2

0
0
2

1
9
.0

7
.2

0
0
2

2
6
.0

7
.2

0
0
2

0
2
.0

8
.2

0
0
2

0
9
.0

8
.2

0
0
2

1
6
.0

8
.2

0
0
2

2
3
.0

8
.2

0
0
2

3
0
.0

8
.2

0
0
2

0
6
.0

9
.2

0
0
2

1
3
.0

9
.2

0
0
2

2
0
.0

9
.2

0
0
2

2
7
.0

9
.2

0
0
2

%CB %RB %BB

Figure 10: JUNIT: March to September 2002

Figures 10 and 11 show these two phases in more detail.
It seems that in 2002 days with a high refactoring rate are
likely to be followed by new bug reports, while in 2005 refac-
torings are rather done after bug reports have been filed.

5. RELATED WORK
Several techniques for detecting refactorings that occurred

between subsequent versions of a software system have been
developed [2, 4, 1, 5].

In a previous paper we showed that extracted refactoring
candidates can be checked for completeness, i.e., whether all

117

0,0

0,2

0,4

0,6

0,8

1,0

1,2
0
1
.0

2
.2

0
0
1

0
8
.0

2
.2

0
0
1

1
5
.0

2
.2

0
0
1

2
2
.0

2
.2

0
0
1

0
1
.0

3
.2

0
0
1

0
8
.0

3
.2

0
0
1

1
5
.0

3
.2

0
0
1

2
2
.0

3
.2

0
0
1

2
9
.0

3
.2

0
0
1

0
5
.0

4
.2

0
0
1

1
2
.0

4
.2

0
0
1

1
9
.0

4
.2

0
0
1

2
6
.0

4
.2

0
0
1

0
3
.0

5
.2

0
0
1

1
0
.0

5
.2

0
0
1

1
7
.0

5
.2

0
0
1

2
4
.0

5
.2

0
0
1

3
1
.0

5
.2

0
0
1

0
7
.0

6
.2

0
0
1

1
4
.0

6
.2

0
0
1

2
1
.0

6
.2

0
0
1

2
8
.0

6
.2

0
0
1

%CB %RB %BB

Figure 11: JUNIT: March to October 2005

related locations have been changed [6].
In a recent case study Dig and Johnson found that 80%

of API changes, that lead to errors in the applications using
these APIs, are refactorings [3].

6. CONCLUSIONS
In this paper we have presented a technique to relate refac-

toring candidates that we extracted from CVS archives for
JAVA programs to bug data in order to find out if the ratio
of refactorings with respect to all changes has an impact on
the number of bugs that arise in the next days. Although
we found interesting correlations between refactorings and
bug reports, we are aware that these could be accidental or
caused by other factors like feature freezes that we did not
yet take into account.

In our case study we applied this technique to three open-
source projects. It turned out that in all three projects,
there are no days which only contain refactorings. This is
quite surprising, as we would expect that at least in small
projects like JUNIT there are phases in a project when only
refactorings have been done to enhance the program struc-
ture. But actually by far the highest refactoring ratio oc-
curred in ARGOUML which is by far the largest one of the
projects.

Finally, we found phases of the projects where a high ratio
of refactorings was followed by an increasing ratio of bugs,
as well as phases where there was no increase. While phases
of the second type prevail, phases of the first kind give inter-
esting insight when and why refactorings can cause errors.

7. ACKNOWLEDGMENTS
Michael Stockman kindly provided the bug data for ARGO-

UML.

8. REFERENCES
[1] G. Antoniol, M. D. Penta, and E. Merlo. An automatic

approach to identify class evolution discontinuities. In
Proceedings of 7th International Workshop on
Principles of Software Evolution (IWPSE 2004), 6-7
September, Kyoto, Japan, pages 31–40. IEEE
Computer Society, 2004.

[2] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding
refactorings via change metrics. In Proceedings of the
2000 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages & Applications
(OOPSLA 2000), pages 166–177, Minneapolis,
Minnesota, USA, 2000. ACM Press.

[3] D. Dig and R. Johnson. The role of refactorings in API
evolution. In Proceedings of the 21st IEEE
International Conference on Software Maintenance
(ICSM 2005), pages 389–398, Budapest, Hungary,
2005. IEEE Computer Society.

[4] M. W. Godfrey and L. Zou. Using origin analysis to
detect merging and splitting of source code entities.
IEEE Transactions on Software Engineering,
31(2):166–181, 2005.

[5] C. Görg and P. Weißgerber. Detecting and visualizing
refactorings from software archives. In Proceedings of
International Workshop on Program Comprehension
(IWPC05), St. Louis, Missouri, USA, May 2005.

[6] C. Görg and P. Weißgerber. Error Detection by
Refactoring Reconstruction. In Proceedings of
International Workshop on Mining Software
Repositories MSR 2005, St. Louis, Missouri, USA, May
2005.

[7] M. Stockman. ARGOUML statistics and diagrams
homepage.
http://user.tninet.se/~zaa397e/argouml/.

[8] The Eclipse Foundation. Eclipse Homepage.
http://www.eclipse.org.

[9] T. Zimmermann and P. Weißgerber. Preprocessing CVS
data for fine-grained analysis. In Proc. International
Workshop on Mining Software Repositories (MSR04),
Edinburgh, Scotland, UK, May 2004.

118

Predicting Defect Densities in Source Code Files with
Decision Tree Learners

Patrick Knab, Martin Pinzger, Abraham Bernstein
Department of Informatics

University of Zurich, Switzerland
{knab,pinzger,bernstein}@ifi.unizh.ch

ABSTRACT
With the advent of open source software repositories the data avail-
able for defect prediction in source files increased tremendously.
Although traditional statistics turned out to derive reasonable results
the sheer amount of data and the problem context of defect predic-
tion demand sophisticated analysis such as provided by current data
mining and machine learning techniques.

In this work we focus on defect density prediction and present
an approach that applies a decision tree learner on evolution data
extracted from the Mozilla open source web browser project. The
evolution data includes different source code, modification, and de-
fect measures computed from seven recent Mozilla releases. Among
the modification measures we also take into account the change cou-
pling, a measure for the number of change-dependencies between
source files. The main reason for choosing decision tree learners,
instead of for example neural nets, was the goal of finding underly-
ing rules which can be easily interpreted by humans. To find these
rules, we set up a number of experiments to test common hypotheses
regarding defects in software entities. Our experiments showed, that
a simple tree learner can produce good results with various sets of
input data.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and En-
hancement—Restructuring, reverse engineering, and reengineering

Keywords
Data Mining, Defect Prediction, Decision Tree Learner

General Terms
Measurement, Management, Reliability

1. INTRODUCTION
A successful software project manager knows how to direct his

resources into the areas with the highest impact on the bottom line.
Regarding the quality of a software system, the areas with great

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

impact are the parts of the code base with the highest defect density,
or even better, with the most future problem reports. Problem reports
obtainable from issue tracking systems (e.g., Bugzilla) can be used
to assess the perceived system quality with respect to defect rate
and density. The objective of such an assessment is to identify the
code parts (i.e., software modules) with the highest defect density.
Improving them will allow the software developers to reduce the
number of problem reports after delivery of a new system or an
update.

Our long term goal is to provide software project teams with
tools allowing a manager to invest resources proactively (rather
than reactively) to improve software quality before delivery. In
this paper we address the issue of predicting defect densities in
source code files. We present an approach that applies decision tree
learners to source code, modification, and defect measures of seven
recent source code releases of Mozilla’s content and layout modules.
Using this data mining technique we conduct a series of experiments
addressing the following hypotheses:

1. Hyp 1: We can derive defect-density from source code metrics
for one release.
This hypothese covers two sub hypotheses concerned with
code quality assessment.

• Hyp 1a: Large source code files have a higher number
of defects than small files.
This is a popular premiss with the underlying assump-
tion that large files are complex, hard to understand and
therefore more susceptible to defects. However, there is
little to gain here. Even if we assume a balanced distri-
bution of defects, larger files trivially have more defects.
More interesting is the defect-density, i.e., number of
problem reports per line of code. Which gives us:

• Hyp 1b: Larger files have a higher defect-density.

2. Hyp 2: We can predict future defect-density.
This is the holy grail of software project management. If we
can predict the files which will have the highest defect rate
in a future release, this would certainly help with ressource
allocation in a project.

3. Hyp 3: We can identify the factors leading to high defect-
density.
Knowing locations with highest defect density the next step
is concerned with gaining insights into the reasons that lead
to defects. These insights allow software developers to proac-
tively improve the system and reduce the number of post-
release defects.

4. Hyp 4a: Change couplings contain information about defect-
density in source files of a single release.

119

Change coupling has shown to provide valuable information
for analyzing change impact and propagation [13, 15]. In this
work we take into account the measure of the change coupling
strength and test its defect density predictive capability in a
single release and:

5. Hyp 4b: Change couplings contain predictive information
about the number of defects in future releases.

Our experiments showed, that a simple tree learner can produce
good results with various sets of input data. We found that common
rules of thumb, like lines of code are of little value for predicting
defect densities. On the other side, “yesterday’s weather“ [6], that
is, number of bug reports in the past, was one of the best predictors
for the future number of bug reports. We also saw, that when
we removed various attributes from the input data, the learning
algorithm was able to keep its performance, by selecting other, often
surprising, attributes.

The remainder of the paper is organized as follows: Related work
is presented in Section 2. Section 3 describes the data we used for
our experiments. The experiments including a discussion of the
results are presented in Section 4. Section 5 draws the conclusions
and indicates areas of future work.

2. RELATED WORK
The need for better guidance in software projects to proactively

improve software quality led to several related approaches. In this
work we concentrate on predicting defect density as well as the
number of defects.

A number of approaches concentrated on using code churn mea-
sures (i.e., amount of code changes taking place within a software
unit over time) for fault and defect density prediction. For instance,
Khoshgoftaar et al. [9] investigated the identification of fault prone
modules in a large software system for telecommunications. Soft-
ware modules are defined as fault-prone when the debug churn
measure (amount of lines of code added or changed for fixing bugs)
exceeds a given threshold. They applied discriminant analysis to
identify the fault-prone modules based on sixteen static product
metrics and the debug churn measure.

Most recently, Nagappan and Ball [12] presented a technique
for early prediction of system defect density based on code churn
measures. Their main hypothesis is that code that changes many
times pre-release will likely have more post-release defects than
code that changes less over the same period of time. Addressing this
hypothesis the authors showed in an experiment that their relative
(normalized) code churn measures are good predictors for defect
density while absolute code churn measures are not. In this paper
we also address the issue of total and relative metric values but
concentrate on different source code metrics of several releases
instead of code churn measures solely. Further we apply machine
learning techniques for our defect density prediction instead of using
statistical regression models.

Munson et al. [11] used discriminant analysis and focused on
the relationship between program complexity measures and pro-
gram faults which are found during development. Besides lines of
code and related metrics e.g., character count, they use Halstead’s
program length, Jensen’s estimator of program length, McCabe’s
cyclomatic complexity and Belady’s bandwidth metric. Due to the
high collinear relationship of these metrics, they mapped them with
a principle-components procedure in two distinct, orthogonal com-
plexity domains. They found that, although the detection of modules
with high potential for faults worked well, the produced models were
of limited value. In our work we use different metrics, especially

various coupling metrics (e.g., fan in and fan out). Additionally we
build our model from multiple releases with decision tree learners.

Fenton et al. [4] tested a range of basic software engineering hy-
potheses and found that a small number of modules contain most of
the faults discovered in pre-release testing and that a very small num-
ber of modules contain most of the faults discovered in operation.
However, they found, that in neither case it could be explained by
the size or complexity of the modules. They distinguished between
pre- and post-release fault discoveries, whereas we concentrate on
bug reports, which are mostly post-release. We can confirm the
findings of Fenton et al. regarding the relevance of module size (in
our case file size), and their observation concerning the distribution
of faults discovered in operation.

In addition to the complexity measures a number of objectori-
ented software metrics have been developed such as the ones from
Chidamber and Kemerer [3]. As with the complexity measures, the
results and opinions of the various investigations are different. An
early investigation of these metrics comes from Basili et al. [1]. They
have defined a number of hypotheses regarding the fault-proneness
of a class. To validate these hypotheses they conducted a student’s
project in which the students had to collect data about the faults
found in a program. Based on this data they used univariate logistic
regression to evaluate the relationship of each of the metrics in
isolation and fault-proneness and multivariate logistic regression to
evaluate the predictive capability. The results have shown that all
but one of these metrics are useful predictors of fault-proneness.

Ostrand et al. [2] used a negative binary regression model to
predict the location and number of faults in large software systems.
The variables for the regression model were selected using the
characteristics they identified as being associated with high fault
rates. They also found, that a simplified model only based on file
size was only marginally less accurate. We can support the finding
that lines of code is a good measure for number of faults, from our
research. However, this fact is of little help in the management of
the development process. To reduce the overall number of faults,
we have to reduce the fault density. The focus of our work is more
on the understanding of the factors that lead to faults than the actual
fault prediction.

Graves et al. [7] developed several statistical models to evaluate
which characteristics of a module’s change history were likely to
indicate that it would see large numbers of faults generated as it is
continued to be developed. Their best model, a weighted time damp
model, predicted fault potential using a sum of contributions from all
the changes to the module in its past. Their best generalized linear
model used numbers of changes to the module in the past together
with a measure of the module’s age. They found, that the number
of deltas, i.e., the number of changes was a successful predictor
of faults, which is also indicated by our experiments. They also
found, that change coupling is not a powerful predictor of faults,
which our results also support. By using decision trees we use all
available measures to build a model including past modification
reports, change couplings and various source code metrics.

Hassan and Holt [8] presented heuristics derived from caching
mechanisms to find the ten most fault susceptible subsystems which
they tested on several big open source projects. Their heuristics are
based on the subsystems that were most recently modified, most
frequently fixed, and most recently fixed. Although we did not dis-
tinguish between repairing modifications and general modifications,
most of the information is also contained in our metrics.

Finally, Mohagheghi et al. [10] concentrated on the influence of
code reuse on defect-density and stability. They found that reused
components have lower defect-density than not reused ones. They
did not observe any significant relation between the number of

120

defects, and component size. They neither found a relation between
defect-density and component size. Our results support the second
finding, but contradict the first.

3. EXPERIMENTAL SETUP
The data for our experiments stems from seven releases of the con-

tent and layout modules of the Mozilla open source project. 1 The
modules are: DOM, NewLayoutEngine, XPToolkit, NewHTML-
StyleSystem, MathML, XML, and XSLT. For more information on
these modules we refer the reader to the module owners web-site 2

of the Mozilla project. The selected releases and their release dates
are listed in Table 1.

Release Date
1 0.92 June, 2001
2 0.97 December, 2001
3 1.0 June, 2002
4 1.3a December, 2002
5 1.4 June, 2003
6 1.6 January, 2004
7 1.7 June, 2004

Table 1: Selected Mozilla releases.

In release 1.7 the seven content and layout modules comprise
around 1.300 C/C++ source and header files with a total of around
560,000 lines of code. From this set of files we selected 366 out of
504 *.cpp files. We skipped 138 files because they did not show a
complete history as is needed for our experiments (i.e., they were
added/removed during this time period). We also skipped the header
files (817 *.h files) because they are naturally connected with the
corresponding implementation files. So, there is nothing to gain
with respect to analyzing the change coupling and predicting the
defect density of these source files.

For this set of *.cpp source files per release we computed the
source code, modification, and defect report metrics as listed in
Table 2. For the source code metrics we parsed each source code
release using the Imagix-4D C/C++ analysis tool. 3 The modifi-
cation and defect report metrics were retrieved from the release
history database that we extracted from Mozilla’s CVS and Bugzilla
repositories as has been presented in our previous work with this
project [5].

The first three source code metrics listed in Table 2 quantify the
size of a *.cpp file according the lines of code (linesOfCode), the
number of defined global and local variables (nrVars), and the num-
ber of implemented functions/methods (nrFuncs). The following
four source code metrics quantify the strength of the static cou-
pling of a *.cpp file with other *.cpp files. For our experiments we
consider incoming (incomingCallRels) and outgoing function calls
(outgoingCallRels) as well as incoming (incomingVarAccessRels)
and outgoing variable accesses (outgoingVarAccessRels).

The remaining metrics are retrieved from the release history data-
base and computed for the time from the begin of the Mozilla project
to the selected release dates. They denote the number of checkins
of a *.cpp file (nrMRs), the number of times a file was checked in
together with other files (sharedMRs), and the number of reported
problems (nrPRs). For the latter metric we further detail the mea-
sures into additional categories denoting the different severity levels
of reported problems. These levels range from problem reports that

1http://www.mozilla.org/
2http://www.mozilla.org/owners.html
3http://www.imagix.com

Name Description
linesOfCode Lines of code
nrVars Number of variables
nrFuncs Number of functions
incomingCallRels Number of incoming calls
outgoingCallRels Number of outgoing calls
incomingVarAccessRels Number of incoming variable accesses
outgoingVarAccessRels Number of outgoing variable accesses
nrMRs Number of modification reports
sharedMRs Number of shared modification reports
nrPRs Number of problem reports
nrPRsNormal nrPRs with severity = normal
nrPRsTrivial nrPRs with severity = trivial
nrPRsMinor nrPRs with severity = minor
nrPRsMajor nrPRs with severity = major
nrPRsCritical nrPRs with severity = critical
nrPRsBlocker nrPRs with severity = blocker

Table 2: Base metrics computed for a C/C++ file.

are marked as trivial to system critical problem reports (i.e.,, system
crashes, loss of data). They allow us a more detailed classification
of the defects in source files.

The shared modification reports metric (sharedMRs) represents
the number of times a file has been checked into the CVS repository
together with other files. The reason for adding this metric is that the
defect density of a file is higher when modifications (e.g.,, bug fixes)
are spread over several files instead of being local to one source file.
This metric has been used several times in recent investigations to
assess the quality of software systems and their evolution (see for
example [13, 15]). In this paper we test its defect density predictive
capability (see Hyp 4a and Hyp 4b).

The metrics listed above are all computed for each selected re-
lease. For predicting the defect density of files we further added
trend and normalized values of these metrics. Trends are denoted
by the deltas of metric values between two subsequent releases. For
instance, the number of functions added/removed or the number
of critical problem reports reported from one release to the next.
Total as well as delta values are normalized with the size of a file
expressed in lines of code (linesOfCode). Such a normalization is a
key factor for predicting the defect density namely the number of
new defects per line of code.

Total and delta values as well as their normalized values form
the input to the experiments presented in the following sections.
Regarding the metric names used in the experiments we prefix each
metric name with the kind of value: total metrics with “static ”;
normalized metrics with “norm ”; and trend metrics with “delta ”.
Furthermore, the number indicating the release (see Table 1) is
added to each metric name. For instance, delta nrMRs 4 denotes
the number of modification reports added from release 1.0 to release
1.3a.

4. EXPERIMENTS
Before we go into our data mining experiments we conducted a

number of descriptive statistics analysis with the selected Mozilla
releases. Here we present an excerpt of the results we obtained
for the Mozilla release 1.0. Similar observations apply to the other
Mozilla releases. Concerning Hyp 1a and Hyp 1b the scatter plot
in Figure 1 shows that number of problem reports in release 1.0
display a strong linear correlation with lines of code. So big files
do not have a higher problem reports to lines of code ratio which
shows us that at least for Mozilla the popular belief that big files are

121

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

static!nrPRs

s
ta
ti
c
!
li
n
e
s
O
fC
o
d
e

Figure 1: lines of code vs number of problem reports

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

norm!nrPRs

n
o
rm
!
s
h
a
re
d
M
R
s

Figure 2: normalized shared modification reports versus nor-
malized problem reports

trouble files does not hold. The downside of this observation is that
lines of code does not make for a simple indicator to detect problem
files.

Our use of lines of code per file instead of, for example, lines of
code per class, results from the fact that most of our metrics like
shared modification reports or problem reports, are only calculated
for files. Lines of code per class might be of some significance when
assessing defect-density, however, this is, based on the research of
Fenton and Ohlsson [4], not the case. In the data mining experiments
we will further elaborate on the issue whether lines of code has any
predictive value.

To test Hyp 4a we analyze the correlation between the normalized
values of shared modification reports and problem reports. The scat-
ter plot for Mozilla release 1.0 is shown in Figure 2. The correlation
coefficient is 0.7234, which, in combination with the graphic, shows
a strong linear correlation between the two values. However, what
value, the normalized shared modification reports metric presents
for the prediction of future number of defects, remains to be seen.

The process for all data mining experiments is as follows: We
export the selected data to an arff file (i.e., a text based data file
readable by the WEKA [14] explorer), which is then loaded into
the WEKA explorer. We then run the five bins equal frequency
discretizer over our data to get the input for our classifier. The use

of equal frequency distribution in the discretizer means that the
prior probability for an instance falling into a given class is twenty
percent. The classifier is the J48 tree learning algorithm provided
by the WEKA tool. The accuracy is calculated with ten-fold cross
validation.

Exp 1: Problem reports from non PR metrics of the same re-
lease: In the first experiment we use all available data from release
four (1.3a) excluding problem report metrics (e.g., nrPRs 4, nrPRs-
Major 4, etc.) to predict the number of problem reports of release
four (nrPRs 4). Figure 3 depicts the top levels of the generated
decision tree. We can see, that the attribute with the most infor-
mation concerning the number of problem reports is the number
of modification reports, hence it appears at the root. Attributes on
the second level are: added number of modification reports since
release 3, shared modification reports, and lines of code. We got

Correctly Classified Instances 227 (62.0219 %)
Incorrectly Classified Instances 139 (37.9781 %)

which is good, given the prior probability of 0.2. Looking at the
confusion matrix

a b c d e <-- classified as
60 9 3 1 0 | a = ’(-inf-7.5]’
12 40 22 2 0 | b = ’(7.5-15.5]’
6 22 25 18 0 | c = ’(15.5-25.5]’
1 3 16 42 11 | d = ’(25.5-62.5]’
0 0 0 13 60 | e = ’(62.5-inf)’

we see the detailed performance for our five classes selected by
the discretizer. The top row of the confusion matrix shows the
labels of the predicted classes. On the right are the labels and the
corresponding intervals of the actual classes. Each cell of the matrix
denotes the number of instances (source files) classified as a, b, c, d,
or e. The matrix diagonal contains the exact matches. For instance,
the numbers in the bottom row state that 60 instances which are of
the actual class e (i.e., source files with more than 62.5 problem
reports), where classified correctly. 13 instances where wrongly
classified as d, none as c, b, or a.

Taking into account only the worst twenty percent, the algorithm
gets 82 percent right, and the other 18 percent are put into the second
worst class. From a management’s point of view, this presents a
valuable result. If the manager concentrates his ressources on the
files which were classified as e or d (i.e., the worst and second worst
class), he would have covered 100 percent of the worst files (i.e., the
files with the highest number of defects).

The connection between the number of modification reports and
problem reports is not that surprising. If there are many bugs, one
has to fix them, which generates modification reports. So what
happens if we take the modification reports away from our learning
algorithm?

Exp 2: Problem reports from non PR metrics of the same re-
lease without MR data: We do the same experiment as above using
the available metrics from release four (1.3a) excluding modification
report data (i.e., nrMRs, sharedMRs) and problem report metrics
(e.g., nrPRs 4, nrPRsMajor 4, etc.). With this data we predict num-
ber of problem reports per line of code (norm nrPRs 4) for release
four (1.3a). Normalized problem reports are better suited to assess
the badness of a file, because big files with a low defect-density are
rated better than small files stuffed with bugs.

Results are below:

Correctly Classified Instances 138 (37.7049%)
Incorrectly Classified Instances 228 (62.2951%)

122

static_nrMRs_4

delta_nrMRs_4 static_sharedMRs_4 static_sharedMRs_4 static_linesOfCode_4 delta_nrMRs_4

Figure 3: Top levels of decision tree resulting from Exp 1

static_linesOfCode_4

delta_outgoingCallRels_4 static_outgoingCallRels_4 static_outgoingCallRels_4 norm_outgoingCallRels_4 static_outgoingCallRels_4

Figure 4: Top levels of decision tree resulting from Exp 2

a b c d e <-- classified as
26 20 11 7 9 | a = ’(-inf-0.037225]’
19 20 19 4 11 | b = ’(0.037225-0.065399]’
9 22 22 10 10 | c = ’(0.065399-0.099327]’
9 12 9 34 10 | d = ’(0.099327-0.143163]’
5 15 9 8 36 | e = ’(0.143163-inf)’

The quality, although significantly above the prior probabilities,
is much worse. Still, by looking at the tree in Figure 4, we can
see that there is at least some information in the size of a file for
the prediction of the number of problem reports. Although, by
looking at the confusion matrix, we can see that the predictions are
heavily scattered which makes them hardly useful. For assessing
the importance of modification reports data we have to conduct
additional experiments.

Exp 3: Normalized problem reports from non PR metrics of
the same release: Here we derive the normalized number of prob-
lem reports from all, but problem report metrics. Thus repeating ex-
periment one with normalized problem reports as the target class. To
predict number of problem reports per line of code (norm nrPRs 4)
of release four (1.3a) we use all metrics from release four except PR
metrics (e.g., nrPRs 4, nrPRsMajor 4, etc.). We get:

Correctly Classified Instances 192 (52.459 %)
Incorrectly Classified Instances 174 (47.541 %)

for this experiment, which confirms the results of experiment one,
but differs in at least one important way. Lines of code is not present
in the top levels of the resulting tree as shown in Figure 5. In the
full tree lines of code is only used in one branch on the third level.
This confirms that lines of code is of marginal importance for the
prediction of defect-density and lets us reject 4 Hyp 1a, and Hyp 1b.

The confusion matrix illustrates the good performance of the
classifier. By looking at the diagonal we see moderate dispersion of
the values. If we count near misses, the prediction, especially for
class e, is excellent.

a b c d e <-- classified as
48 19 4 2 0 | a = ’(-inf-0.037225]’
14 33 15 7 4 | b = ’(0.037225-0.065399]’
6 16 33 13 5 | c = ’(0.065399-0.099327]’
3 8 7 35 21 | d = ’(0.099327-0.143163]’
1 2 7 20 43 | e = ’(0.143163-inf)’

4This is an informal rejection as we have not used any formal
hypotheses testing model such as T-test.

Exp 4: Normalized problem reports from non PR metrics
of the same release without sharedMR data: Here we exclude
shared modification report metrics thus using all metrics except PR
metrics (e.g., nrPRs 4, nrPRsMajor 4, etc.) and shared modification
report metrics (e.g., sharedMRs, norm sharedMRs) from release
four, to predict the number of problem reports per line of code
(norm nrPRs 4) of release four (1.3a).

Correctly Classified Instances 197 (53.8251 %)
Incorrectly Classified Instances 169 (46.1749 %)

a b c d e <-- classified as
49 17 3 4 0 | a = ’(-inf-0.037225]’
14 35 14 6 4 | b = ’(0.037225-0.065399]’
3 16 37 13 4 | c = ’(0.065399-0.099327]’
2 7 13 29 23 | d = ’(0.099327-0.143163]’
1 5 2 18 47 | e = ’(0.143163-inf)’

The error rate and the confusion matrix are almost identical to
experiment three. This is a strong sign, that the number of problem
reports does not depend on the amount of logical coupling a file has
with its surrounding.

But, taking a closer look at Figure 6 we can see that other coupling
metrics were used in the prediction of number of problem reports:
added normalized outgoing call relationships and incoming call
relationships.

The results of these first experiments show, that we can predict
defect densities (measured by number of problem reports) with
accuracies of more than 50% given a prior probability of 20%. So
we can accept Hyp 1. However, lines of code is not a good predictor
of defect-density so we have to reject Hyp 1a and Hyp 1b. At this
point, we cannot verify Hyp 4a fully. The classifier uses mainly
other modification report metrics for the prediction which indicates a
low importance of shared modification reports for defect prediction.

The next set of experiments are mainly concerned with Hyp 2 and
Hyp 4b.

Exp 5: Added problem reports of release 6 with data from
releases 3, 4, 5: For experiment four we use all available data
from releases 3, 4, and 5, e.g., lines of code in release three (linesOf-
Code 3), added modification reports in release four (delta nrMRs 4),
the number of added problem reports with severity major per lines
of code in release five (delta norm nrPRsMajor5) and predict the
number of added problem reports in release 6 (delta nrPRs 6).

The performance of the classifier is acceptable:

Correctly Classified Instances 186 (51.2397%)

123

norm_nrMRs_4

delta_nrom_nrMRs_4 delta_norm_outgoing
CallRels_4 delta_nrMRs_4 norm_sharedMRs_4 delta_sharedMRs_4

Figure 5: Top levels of decision tree resulting from Exp 3

norm_nrMRs_4

delta_nrom_nrMRs_4 delta_norm_outgoing
CallRels_4 delta_nrMRs_4 static_nrFuncs_4 norm_incomingCallRe

ls_4

Figure 6: Top levels of decision tree resulting from Exp 4

Incorrectly Classified Instances 177 (48.7603%)

a b c d e <-- classified as
104 11 12 9 2 | a = ’(-inf-0.5]’
26 16 2 4 0 | b = ’(0.5-1.5]’
25 4 23 11 4 | c = ’(1.5-3.5]’
12 3 14 12 15 | d = ’(3.5-6.5]’
3 0 4 16 31 | e = ’(6.5-inf)’

The confusion matrix shows a high accuracy for class a, lower
accuracy for the middle classes (b,c,d), and again a high accuracy
for class e if we count near misses.

In Figure 7 we see that the top node, added problem reports with
severity major from release 4, divides the data set the best regarding
added problem reports. The presence of change coupling metrics
only in a few lower branches shows that isolated, they are not very
valuable for the prediction of the future number of defects. Which
supports our finding, that there are no simple dependencies between
defect-density and other metrics.

Exp 6: Added problem reports of release 7 with data from
releases 3, 4, 5, 6: This experiment is a repetition of Exp 5 but
predicting for release seven (delta nrPRs 7) using input data from
releases three through six. As we can see, from the output below,
the performance is better and, more interesting, the top node has
changed to something, at least for us, surprising. In Figure 8 the top
node of the tree is static nrFuncs 6. At the second level, however,
mostly problem report metrics from earlier releases are used.

Correctly Classified Instances 215 (59.2287%)
Incorrectly Classified Instances 148 (40.7713%)

a b c d e <-- classified as
145 17 2 1 2 | a = ’(-inf-0.5]’
35 14 7 5 5 | b = ’(0.5-1.5]’
7 8 6 6 2 | c = ’(1.5-2.5]’
8 7 7 18 12 | d = ’(2.5-4.5]’
3 4 2 8 32 | e = ’(4.5-inf)’

Conducting the same experiment with normalized added problem
reports as target attribute, the performance degrades to:

Correctly Classified Instances 162 (44.6281%)
Incorrectly Classified Instances 201 (55.3719%)

This result supports our assumption that number of functions is
used as a measure for the length of the file. When we remove

number of functions from the input data of the initial experiment
static outgoingCallRels 6 is at the root of the resulting tree. This
suggests that number of functions is somehow related to outgoing
calls. However, such a conclusion is premature considering the
displayed complex dependencies between the various metrics.

In experiment four and five we showed, that it is possible to pre-
dict future defect-density with data mining techniques to an extend
that is useful for an engineer or the management. We therefore can
accept Hyp 2.

However, as we have seen in the other experiments, the relation-
ships between the various metrics are complex. The sheer amount
of data makes it impossible to intuitively understand the underlying
decisions of a classifier by just looking at a generated tree. This
leeds to the partly rejection of Hyp 3.

5. CONCLUSIONS AND FUTURE WORK
Our long term goal is to provide software project teams with

tools allowing a manager to invest resources proactively (rather than
reactively) to improve software quality before delivery. A key factor
of such tools is the capability to predict defect densities in software
modules such as source files or classes.

In this paper we specifically investigated the application of data
mining on a number of source code, modification, and defect mea-
sures to test their applicability for defect prediction. The focus of
our work is more on the understanding of the factors that lead to
defects than the actual defect prediction. For this we stated a set
of hypotheses that we addressed in a series of experiments with
data from seven releases of the content and layout modules of the
Mozilla open source project.

The data mining experiments showed, that a decision tree learner
(J48) can produce reasonable results with various sets of input data.
Regarding our hypotheses:

• We were able to predict defect densities with acceptable ac-
curacies with metrics from the same release and therefore
accepted Hyp 1.

• We found that lines of code has little predictive power with
regard to defect-density therefore rejected Hyp 1a and Hyp
1b. In general, size metrics such as number of functions are of
little value for predicting defect densities.

• We were able to predict defect-density with satisfactory ac-
curacy by using evolution data (e.g., number of modification
reports) therefore accepting Hyp 2.

124

delta_nrPRsMajor_4

static_linesOfCode_3 delta_norm_outgoing
CallRels_4

static_nrPRs_critical_
4 delta_nrPRsNomal_5 delta_outgoingCallRel

s_3

Figure 7: Top levels of decision tree resulting from Exp 5

static_nrFuncs_6

static_nrPRsBlocker_3 delta_nrPRsMajor_3 norm_nrPRsMinor_5 static_nrPRsMajor_4 delta_nrPRsNormal_4

Figure 8: Top levels of decision tree resulting from Exp 6

• Due to complex relationships between the various metrics
we could only partly identify factors that lead to high defect-
density. This resulted in the partly rejection of Hyp 3.

• We found that change couplings are of little value for the
prediction of defect-density therefore we rejected Hyp 4a and
Hyp 4b.

Future work is concerned with including detailed measures of
modifications (e.g., number of statements changed) and defects
(e.g., bug status information) in our experiments. In addition, we
also plan to take into account the various source code complexity
measures, such as McCabe’s cyclomatic complexity or the Halstead
complexity measures. With this additional information we can gain
deeper insights into the internals of the implementation as well as
the past defects and modifications that caused increase as decreases
of defect densities in source files and classes.

Another area of future work is to use other data mining techniques
and conduct our experiments with additional case studies from the
open source community as well as industrial software systems.

6. ACKNOWLEDGMENTS
We thank Harald Gall, Peter Vorburger, Beat Fluri and the anony-

mous reviewers for their valuable input. This work was supported
by the Swiss National Science Foundation.

7. REFERENCES
[1] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of

object-oriented design metrics as quality indicators. IEEE
Trans. Softw. Eng., 22(10):751–761, 1996.

[2] R. M. Bell, T. J. Ostrand, and E. J. Weyuker. Predicting the
location and number of faults in large software systems. IEEE
Trans. Softw. Eng., 31(4):340–355, 2005.

[3] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design. IEEE Trans. Softw. Eng., 20(6):476–493,
1994.

[4] N. E. Fenton and N. Ohlsson. Quantitative analysis of faults
and failures in a complex software system. IEEE Trans. Softw.
Eng., 26(8):797–814, 2000.

[5] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. In Proceedings of the International Conference on
Software Maintenance, pages 23–32, Amsterdam,
Netherlands, September 2003. IEEE Computer Society Press.

[6] T. Girba, S. Ducasse, and M. Lanza. Yesterday’s weather:
Guiding early reverse engineering efforts by summarizing the
evolution of changes. In Proceedings of the 20th IEEE
International Conference on Software Maintenance, pages
40–49, Washington, DC, USA, 2004. IEEE Computer Society.

[7] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting
fault incidence using software change history. IEEE Trans.
Softw. Eng., 26(7):653–661, 2000.

[8] A. E. Hassan and R. C. Holt. The top ten list: Dynamic fault
prediction. In Proceedings of the 21st IEEE International
Conference on Software Maintenance, pages 263–272,
Washington, DC, USA, 2005. IEEE Computer Society.

[9] T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and
J. McMullan. Detection of software modules with high debug
code churn in a very large legacy system. In Proceedings of
the The Seventh International Symposium on Software
Reliability Engineering, page 364, Washington, DC, USA,
1996. IEEE Computer Society.

[10] P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz. An
empirical study of software reuse vs. defect-density and
stability. In Proceedings of the 26th International Conference
on Software Engineering, pages 282–292, Washington, DC,
USA, 2004. IEEE Computer Society.

[11] J. C. Munson and T. M. Khoshgoftaar. The detection of
fault-prone programs. IEEE Trans. Softw. Eng.,
18(5):423–433, 1992.

[12] N. Nagappan and T. Ball. Use of relative code churn measures
to predict system defect density. In Proceedings of the 27th
international conference on Software engineering, pages
284–292, New York, NY, USA, 2005. ACM Press.

[13] J. Ratzinger, M. Fischer, and H. Gall. Evolens: Lens-view
visualizations of evolution data. In Proceedings of the
International Workshop on Principles of Software Evolution,
pages 103–112, Lisbon, Portugal, September 2005. IEEE
Computer Society Press.

[14] I. H. Witten and E. Frank. Data Mining. Morgan Kaufmann
Publishers, 1999.

[15] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. IEEE
Trans. Softw. Eng., 31(6):429–445, 2005.

125

Information Theoretic Evaluation of Change
Prediction Models for Large-Scale Software

Mina Askari
School of Computer Science

University of Waterloo
Waterloo, Canada

maskari@uwaterloo.ca

Ric Holt
School of Computer Science

University of Waterloo
Waterloo, Canada

holt@uwaterloo.ca

ABSTRACT
In this paper, we analyze the data extracted from several open
source software repositories. We observe that the change data
follows a Zipf distribution. Based on the extracted data, we
then develop three probabilistic models to predict which files
will have changes or bugs. The first model is Maximum
Likelihood Estimation (MLE), which simply counts the number
of events, i.e., changes or bugs, that happen to each file and
normalizes the counts to compute a probability distribution. The
second model is Reflexive Exponential Decay (RED) in which
we postulate that the predictive rate of modification in a file is
incremented by any modification to that file and decays
exponentially. The third model is called RED-Co-Change. With
each modification to a given file, the RED-Co-Change model
not only increments its predictive rate, but also increments the
rate for other files that are related to the given file through
previous co-changes. We then present an information-theoretic
approach to evaluate the performance of different prediction
models. In this approach, the closeness of model distribution to
the actual unknown probability distribution of the system is
measured using cross entropy. We evaluate our prediction
models empirically using the proposed information-theoretic
approach for six large open source systems. Based on this
evaluation, we observe that of our three prediction models, the
RED-Co-Change model predicts the distribution that is closest
to the actual distribution for all the studied systems.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement- Version control
D.2.8 [Software Engineering]: Metrics- Performance
measures, Process metrics
General Terms
Performance, Reliability, Theory

Keywords
Prediction Models, Evaluation approach, Information Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

1. INTRODUCTION
Software systems are continuously being changed to adapt to
meet the needs of their users or to correct the faults appearing in
systems during development or after deployment. There has
been extensive research on new processes and approaches for
developing software systems to minimize these new
modifications. The idea is that during software development by
following some specific principles, the probability of certain
kinds of modifications can be decreased. Despite this progress,
new changes and bugs are inevitable during software
development. However, if software developers were able to
forecast the occurrence of changes and bugs then they could
mitigate their impact. Therefore, developing accurate techniques
to predict the future behavior of changes and bugs can be
valuable for software development and maintenance.
The idea for predicting which files/subsystems are most
susceptible to having a fault in the near future is a well-known
idea. There exist several prediction models [5][6][8][9][10][14]
and more are emerging. However, many of these fault prediction
models have not been evaluated in practice and some of them
are not applicable to large-scale software systems. The majority
of fault prediction models are applicable to deployed systems
only. The general approach for evaluating these models is to run
the system and collect the observed information during its
execution and then compare it with the results predicted by the
models [18]. The problem is that too often these models are not
general and hence, they are not applicable to different software
systems. In many cases, because the models measure different
metrics, the results are not comparable [18]. There are many
questions with respect to the validity of the underlying
assumptions, accuracy, and applicability of software prediction
models. In this paper, our goal is to contribute toward more
general and realistic assessment and prediction of software
modifications based on theoretical and empirical studies. We are
interested in methods and models that have two properties. First,
they use data collected during development process and second,
their distance from the actual but unknown distribution of the
collected data can be measured. Our goal is twofold: first, to
develop prediction models driven by software repositories and
second, evaluate and compare different models using a
mathematical approach. We use historical records, from source
control repositories of large software systems, to develop
prediction models and to estimate how much information is
captured by the models.
Figure 1 illustrates the problem we are trying to solve. Suppose
we have a list of all the events that have so far occurred on
different files of a software system during development process.

126

These events are file changes to fix bugs, or to add new features
or change existing features. We have extracted these events
from the history of the software. For example f21 shows that one
modification has happened on file 21 at the specific time (see
Figure 1). We ask this question: To what degree are these
changes unpredictable? More particularly, what will be the
uncertainty of the next sample, if all past samples are known? In
some cases, it may be impossible to say anything about the next
sample regardless of how many past samples are already known.
In other cases, the process may be much less uncertain about the
next sample when given the history of the changes. Having
extracted historical data, we want to determine how much
information this data provides us about the future. Our results
indicate that CVS log data contains information about the past
that can help to predict the future. The questions include: How
much information is buried in the CVS logs and how can we
capture this information? How good are the prediction models
that use this information to predict the future?

Figure 1. Does past predict future?

After introducing related work in Section 1.1, the rest of the
paper is organized as follows. Section 2 presents the techniques
and approaches we used to perform different experiments in
order to analyze the data extracted from several open source
software repositories. In Section 3, we present our three
prediction models and describe the steps involved in developing
the models. In Section 4, we present an information theoretic
approach for evaluation prediction models. In Section 5 presents
the results of using two approaches for evaluating our proposed
prediction models: the Top Ten List approach proposed by
Hassan et al. [8] and our information theory based approach.
Finally, Section 6 concludes the paper and discusses possible
future works.

1.1 Related Work
Many researchers [2][5][6][8][9][16][17] in software
development area have realized the value of historical data and
have used them in their research ranging from software design
to software understanding, software maintenance, development
process and many more areas.
There is considerable research on developing tools to recover
such historical data. Hassan et al. [7] developed C-REX tool, an
evolutionary code extractor, which recovers information from
source control repositories. Zimmermann et al. [19] used version
repositories to determine co-change clusters. They applied data
mining to version histories in order to guide programmers

through related changes. For detecting another kind of co-
changes Gall et al. [5] used software repositories. They
uncovered the dependencies and interrelations between classes
and modules (logical dependencies) which can be used by
developers in maintenance phase of a system.
Graves et al. [6] showed that there is a relation between the
number of changes a subsystem has with the future faults in that
subsystem. Hassan et al. [8] presented various heuristics using
historic version control data to create the Top Ten List. Top Ten
List highlights to managers the ten most susceptible subsystems
to have a fault. They also developed techniques to measure the
performance of these heuristics.
Mockus et al. [12] studied a large legacy system to test the
hypothesis that historic version control data can be used to
determine the purpose of software changes and to understand
and predict the state of a software project [13]. Khoshgoftaar et
al. [9][10] used process history to predict software reliability
and to show that the number of prior modifications to a file is a
good predictor of its future faults. Eick et al. [4] presented
visualization techniques to explore change data to help
engineers understand and manage the software change process.
Ostrand, et al. [14] suggested a model to predict the number of
faults for a large industrial inventory system based on the
history of the previous releases.
Our approach takes guidance from this previous work, but is
notably different by suggesting new prediction models and by
using an information theoretic approach to measure the
effectiveness of such models.

2. CHARACTERISTICS OF THE DATA
The prediction models and the evaluation methods presented in
this paper are based on change history data. Change data is the
information generated during development process and can be
obtained through mining the repositories of the software. We
began by analyzing the extracted data to understand its
statistical properties. In particular, we observed that history data
has Zipf distribution [20].

2.1 Studied Systems
To perform our study we used several CVS logs of open source
software systems. Table 1 summarizes the details of the
software systems we studied. The oldest system is over ten
years old and the youngest system is five years old. We tried to
choose the applications from different domains and different
sizes. We were looking for any kind of change and bug which
happens to different files of a system. The process of acquiring
such specific data is very challenging, since CVS logs are
mainly designed as record keeping repositories and commits
aren’t atomic and large amount of data stored in these
repositories complicates the data extracting process. For
analyzing data and creating prediction models and comparing
them based on the data, our main concern was to perform our
studies on the data of several CVS logs software systems in a
standard format that is easier to process and not developing
tools that automatically recover data from these repositories. So
we obtained and used the data which were extracted from these
CVS logs by tools developed by Hassan et al. [7]. This let us
concentrate on analyzing the extracted data instead of spending
time developing tools to recover the data.

127

Table 1. Number of events available for different systems

Application
Name

Duration
(Month)

Total
Events

Bug or
Changes

Total
Files

OpenBSD 88 80354 67149 7065

FreeBSD 115 126432 101252 5272

KDE 70 93204 77994 4063

Koffice 58 92944 73409 6312

NetBSD 119 239628 131307 11760

Postgres 77 41175 26510 1468

2.2 Zipf’s Law
We started by counting the number of modifications which
happened for each file during the development process. Based
on the history of the development, if we count how often each
file is modified, and then list the files in order of the frequency
of occurrence, we can explore the relationship between the
frequency of a file and its position in the list, known as its rank.
Figure 2 illustrates the number of modifications for each file for
different systems we studied. Different systems have different
number of files. Therefore, to compare all the studied systems in
a single plot, we used the percentage of files and percentage of
activities for each file in Figures 2 to 4.
As it can be seen from the figure 2, there are few files with high
frequency of changes but many files with very low number of
changes. It also can be seen in the figure, these frequencies
follow a similar pattern in all studied systems. This behavior
indicates that the change data follows the general form the
Pareto (or 80-20) law [15] and Zipf's law [20].

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
Percentage of the Files

Pe
rc

en
ta

ge
 a

t t
ha

t F
re

qu
en

cy

Postgres

KDE

OpenBSD

FreeBSD

Koffice

NetBSD

Figure 2. Change data follows Zipf’s law.

The Pareto law, in its generalized form, states that 80% of the
objectives - or more generally the effects - are achieved with
20% of the means. In order to show that there is 80-20 law in
our data, we plotted the cumulative distributions of the file
frequencies in Figure 3. It can be seen from the figure that
almost 20% of the files in the systems have (almost) 80% of
activities during development. To show that Zipf’s law holds for
the data, we plotted the log-log scale of the cumulative
frequency distributions; see Figure 4. It can be seen that the

points are close to a single straight line thereby confirming that
the data approximates Zipf’s law [20].

3. CHANGE PREDICTION MODELS
The prediction of future modifications in a large software
system is an important part in software evolution. Since most
prediction models in past studies have been constructed and
used for individual systems, it has not been practically
investigated whether a prediction model based on one system
can also predict faults and changes accurately in other systems.
Our expectation was that if we could build a model applicable to
different range of systems based on the information which is
generated during development process, e.g. CVS logs, it would
be useful for software developers. In this Section we will show
several prediction models which can use the CVS logs to predict
the future bugs and changes in any arbitrary system. These
models are generally in form of probability models.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percentage of the Files

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

Postgres

KDE

OpenBSD

FreeBSD

Koffice

NetBSD

Figure 3. Cumulative frequency distributions.

1

10

100

1 10 100

Log-Percentage of the Files

Lo
g-

C
um

ul
at

iv
e

Fr
eq

ue
nc

y Postgres

KDE

OpenBSD

FreeBSD

Koffice

NetBSD

Figure 4. Log-log scale of cumulative distributions.

After extracting the changes and bugs that occurred in the
various files of a system during development, we created a
sequence of events showing file changes to fix bugs or to add
features. Having this sequence of events our goal is to predict
future comparable events. There are many files in the systems

128

we studied, ranging from 1000 to 20000 files. We wanted to
construct a probabilistic model of this process, in other words,
to define a probabilistic model that characterizes the result of
the next element in the sequence. We assume that we know that
the possible value space, i.e., the Domain D (i.e., sample space)
for event e (considered as a random variable). In our work, D is
the set of files in the system. We denote the elements of this
Domain as f1, f2... fm. Our goal is to define a good probability
model to give the probability that the ith (i.e., next) element in
the sequence will have a particular value (will be a particular
file); in other words for finding the probability distribution of
random variable ei, what we need to do is to decide on the form
of the underlying model of the sequence of events. Ideally this
would be a conditional probability function of form P(ei | e1, e2,
...,ei-1). Our work is complicated by the fact that, in general, a
new probability function is needed for each ei. Based on this
approach, we will now present three probabilistic models.

3.1 Most Likely Estimation (MLE) Model
Our first model, maximum likelihood estimate (MLE), simply
uses the counts from the sequence to estimate the distribution.

) () / N Count(f) f(e P ii MLE 1==

In (1), fi ∈ D, N is the size of sequence, and Count(fi) is the
number of occurrences of fi in the sequence.
The proportion of times a certain event fi occurs is called the
relative frequency of the event. In the MLE model, we compute
(predict) the relative frequency of each new event based on the
preceding sequence. Empirically for our data we observed if one
performs a large number of trials, the relative frequency (for
each file) tends to stabilize around some number.
In our experiments, instead of definition (1), we computed our
MLE probability distributions [1] using this formula:

) (d)) / (N) (Count(f) f(E P iiMLE 21 ++==

In (2), fi ∈ D, N is the size of sequence, Count(fi) is the number
of occurrences of fi and d is the size of domain D.
We use this equation because equation (1) has two
computational problems. The first problem is that it implicitly
assigns a zero probability to elements of domain that have not
been observed in the sequence. This means it will assign a zero
probability to any sequence containing a previously unseen
element. The second problem is that it does not distinguish
between different levels of certainty based on the amount of
evidence we have seen. One solution is to assign a small
probability to each possible observation at the start. We do this
by adding a small number (we use l) to the count of each
outcome to get the estimation formula. This technique, using
value 1, is called Laplace estimation [1]. If we never see a token
of a type f in a corpus of size N and domain size d, the
probability estimate of a token of f occurring will be 1/(N+d).
For the second problem, using Laplace formula, our prior
knowledge that there is D different types of events makes our
estimate stay close to the uniform distribution [1].

3.2 Reflexive Exponential Decay (RED)
Model
Our second model relies on the idea that when a change is
observed in a file, it is likely that more changes will be observed
in that file, but that this effect decreases (decays) with time. We
are given a sequence of events called e1, e2 … en, occurring
respectively at monotonically increasing times t1, t2 … tn. We
assume that events probabilistically predict events, e.g., bug
fixes predict bug fixes. By analogy, yesterday’s weather is a
good predictor of today’s weather.
We postulate that the predictive rate of bugs induced by any
event decays exponentially. We call this model reflexive
because each event in turn predicts more events. More
generally, we call it the reflexive exponential decay (RED)
model. A particular event occurring at time ti on the file fj,
implies (predicts) a future frequency rate Rt(j) for that file at
future time t. Our model defines Rt(j) as follows:

i

)/hi(t-t)ik(t-t
t

 tt)/h and (- k where
) ()/ I (I e(j) R

>=

==

2ln
321

In formula (3), h is the half life (measured typically in months)
and I is the “impact” of an event (measured typically in events
per month). This means that if in the sequence of events, ei
happens at time ti and ei is a modification of file fj, for all time t
> ti, the predicted incremental frequency for file will be Rj(t).
A larger half life h means that the effects of a change last
longer. Figure 5 shows Rt(j) for different half lives and with
impact of I = 1 and ti = 0.
Based on Rt(j) for each event on file fj, we define the RED
model as the summation of the effects all (historical) events
happening to each file.
We now formalize the RED frequency model. Suppose that the
sequence of events, e0, e1, e2, .., el has happened on file fj up
time t. Then RED predicts that the future frequency of changes
to this file will be:

) (tfor all t
 I e ... I e I e I e(j) R

l

)lk(t-t)k(t-t)k(t-t)k(t-t
t

4

210

≥

++++=

Figure 6 shows how the effect of each event is added to the
previous ones for a specific file. In the figure, specific file fj has
been observed to change at times 0, 5 and 15; the individual
exponentially decaying predictive effects of these three events
are shown as the three lower curves. The cumulative effect of
these first two of these (from times 0 and 5) is shown as another
curve. Then the effect of all three of these is shown by yet
another (the highest) curve.

RED Distribution Model
We will now convert our RED model so that it predicts
probability distribution rather than frequency. Given a sequence
of events: e0, e1, e2, .., em, having Rt(j) for all files j = 1..n, we
can define the distribution of RED at time t as follows:

) (t for t
(j) R

(i) R) f (eRED m

..nj
t

t
imt 5

1

1 ≥==
∑
=

+

129

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35

Time (month)

Pr
ed

ic
te

d
Fr

eq
ue

nc
y

1 month
2 month
3 month
6 month

Figure 5. Exponential decay for different half lives.

3.3 RED Co-Change (REDCC) Model
Our third model is an enhanced version of RED. When each
event occurs we update the probability not only for the changed
file but also for the co-changed files. There are several different
approaches for concluding that (or defining that) the files
change (co-change) together during software development.
Developers commonly modify files together (co-change them)
to introduce new features or fix bugs. Developers should ensure
that when one file is changed, other related files in the software
system are updated to be consistent with the modifications. We
use a definition of co-change that is inspired by the literature
[8]. If file f1 and f2 changed together (on the same day) in
previous change sets, then they are candidates to be considered
as co-changed files. We will define that co-change files are
those sets of files which have changed on the same day in the
past at least 3 times within the preceding 7 days. We now define
the RED Co-Change (REDCC) model. We assume that at time
t, the sequence of events, e0, e1, e2, .., em has happened on file fi
or on the co-change files of fi up to this time.

) ()k(t-t I e ...)k(t-t I e)k(t-tI e(j)tREDCC m 610 +++=

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Time

R
ef

le
xi

ve
 E

xp
on

en
tia

l D
ec

ay Effect of change #1

Effect of change #2

Effect of change #3

Effect of changes #1 & #2

Effect of changes #1, #2 & #3

Figure 6. Reflexive exponential decay for a file.

Using REDCCt(j) frequency model, we convert it to the
probability model REDCCt(em+1=fi) in the same way we
converted the RED frequency model to a probability model.

4. EVALUATION OF PREDICTION
MODELS
In this section we present an information theoretic approach to
quantify the goodness or fitness of a guessed probability g (g is
a prediction model) compared to the actual probability p. Our
approach uses entropy concepts to evaluate prediction models.
Our goal is to compare these predictive models (distributions) to
see how good they are. By “good” we mean how close they are
to the true distributions of the events. It also could mean that
how well they predict the occurrence of the next event. The
approach we take is well known in Natural Language Processing
(NLP) area, where a sequence of words in language is called
corpus, but to our knowledge has not been used in the field of
Mining Software Repositories. NLP uses information theory to
find the distance between prediction models and actual
distribution of corpus [11].

4.1 Entropy and Cross Entropy
Before introducing our information theoretic approach, we will
review some related concepts. Information theory techniques
define the amount of information in a message. The theory
measures the amount of uncertainty/entropy in a distribution.
Shannon entropy [11], given probability p(x), is defined as:
H(p) = -∑ p(x)log p(x)
Larger values of H(p) imply that more bits are needed for
coding messages.
There is a related concept called cross entropy which allows us
to compare two probability functions. (Cross entropy is closely
related to Kullback-Leibler divergence [11].) The cross entropy
between two probability distributions measures the overall
difference between the two distributions p and m and is defined
as:
H(p,m) = -∑ p(x)log m(x)
Where p(x) is the true distribution and m(x) the model
distribution.
The cross entropy is minimal when p and m are identical, in
which case it reduces to simply H(p). The closer the cross
entropy is to entropy proper, the better m is an approximation of
p. If we have two models m1 and m2, if H(p, m1) < H(p, m2) then
m1 is a closer approximation to distribution to p.
This approach seems to require that we know p, the actual
distribution of data, which unfortunately we do not know. One
of the central problems we face in using probability models is
obtaining the actual distribution p(x) of data. The true
distributions are not known, yet we want to estimate predictive
models and validate them using the existing data.
Here there is a paradox: if we had p(x) in advance, we wouldn’t
need to make any model for estimating p(x).

4.2 Corpus Cross Entropy
We solve this problem with using corpus cross entropy (CCE).
Given a sequence c with of length N consisting of events e1…eN,
the corpus cross entropy of a probability function m is defined
as follows:
Hc(m) = -(1/N) ∑ log m(ei)

130

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
List size (Percentage of total files)

H
it

R
at

io

Koffice-RED

Koffice-MLE

Koffice-RED+CoChange

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

List size (Percentage of total files)

H
it

R
at

io
 OpenBSD-RED

OpenBSD-MLE

OpenBSD-REDCC

Figure 7. Evaluation of 3 models based on Hit Ratio of Top Ten List, with varying size of list.

It is straightforward to prove that corpus cross entropy Hc(m)
approaches cross entropy H(p,m) as N approaches infinity,
given that p is the true distribution of corpus c and given that p
is stationary. We can compute Hc(m), as an approximation to
H(p,m), even though we do not know distribution p. As is done
in NPL literature [11], we assume that given two models m1 and
m2 we can compare Hc(m1) and Hc(m2) to determine which of
m1 and m2 is the better model, even though we do not know the
true distribution p, given that p is reasonably stationary. That is,
when Hc(m1) < Hc(m2) we conclude that m1 is a closer
distribution to the true distribution and hence is a better model.

5. EMPIRICAL STUDIES
In this section we evaluate our three proposed prediction models
(MLE, RED and REDCC) empirically, using two approaches,
for six large open source systems. Table 1 summarizes the
details of the software systems we studied. Due to space
limitation we will only shown the results for two systems
(Koffice and NetBSD). The other systems had similar behavior.

5.1 Top Ten List evaluation
For evaluating the quality of our three models, first we use the
Top Ten List [8] approach. This approach evaluates which
model predicts more accurately.
In this approach, the model predicts a list of the 10 files (more
generally, a list of n files) that are most likely to be changed
next. A new list is generated for each new event.
Given a predicted distribution m for the next event, we create
the corresponding Top Ten List for that upcoming event by
picking the ten (or n) files with the highest probability according
to m.
With the occurrence of each event, there is a change to a file,
call it file fi. We record whether file fi is in the event’s Top Ten
List. We define the Hit Ratio as the fraction of events in which
file fi was observed to be in its Top Ten List. Models with
higher Hit Ratios are considered to be better models.
We applied the Top Ten List approach to evaluate our three
proposed models, for all the studied system; see Figure 7 for the
results for two of these systems: Koffice and OpenBSD.
(Results for the other studied systems are comparable.) As can
be seen, for both systems, REDCC and RED have very similar
results, with REDCC being slightly superior. By contrast,
MLE’s results are considerably worse. In other words, the Top

Ten List approach evaluates REDCC is slightly better than
RED, and both of these considerable better than MLE.
As can be seen in Figure 7, as the size of list increases, we have
a higher hit ratio. Interestingly, using REDCC or RED model,
when we use 20 percent of total files in the system, the hit ratio
is almost 80 percent.

5.2 Information theoretic evaluation
We also applied the information theoretic approach to compare
our three prediction models. Due to space limitations, we only
present the result for one of the studied system, Postgres. The
results for the other systems are similar.
Using historical Postgres data, we developed instances of our
three models: MLE, RED and REDCC. To develop the MLE
model, we used the first 10000 events and kept it fixed for the
remaining corpus.
Figure 8 shows the corpus cross entropy of our three predictive
models when applied to Postgres. As it can be seen in the figure,
REDCC has the lowest corpus cross entropy which means its
distribution is the closest to the actual distribution of the data.
The next closest (see middle curve in Figure 9) is RED, and the
worst (top curve) is MLE. Note that this ordering is the same
that we observed when our evaluations were based on the Top
Ten List.
As can be seen in Figure 8, as the size of corpus increases the
MLE distribution gets farther from the real distribution of data
but for two other models, RED and REDCC, the opposite is
true. This suggests that the RED and REDCC models benefit by
updating their distributions based on the events in the corpus as
time passes.

8
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
10

10000 12000 14000 16000 18000 20000 22000 24000

Size of corpus

C
or

pu
s

cr
os

s
en

tro
py

REDCC (bottom curve)
RED (middle curve)
MLE (top curve)

Figure 8. Evaluation of 3 models using corpus cross
entropy on Postgres.

131

6. CONCLUSION
We developed three models (MLE, RED and REDCC) for
predicting future modification of files based on available change
histories of software. We proposed a rigorous approach for
evaluating such predictive models. This approach has been used
in Natural Language Processing, but not in Mining Software
Repositories, as far as we know. This is an information theoretic
approach in that the closeness of a predictive model distribution
to an actual but unknown probability distribution of the system
is measured using cross entropy. We evaluated our proposed
prediction models empirically using two approaches for six
large open source systems. First we used the Top Ten List [8]
approach to see which model predicts more accurately. Using
this approach we showed that the REDCC model works best of
our three models. Then using our information theoretic
evaluation approach, we observe that the REDCC model again
has the distribution that is closest to the actual distribution for
all the studied systems. An advantage of our information
theoretic approach over the Top Ten List approach is that using
our approach we know quantitatively, as measured by cross
entropy, how much better or worse is the prediction model
compared to ideal result.
Our hope is that our approach can be used to help better predict
future changes and bugs, based on the history of software. Our
approach also can be used by researchers who have developed
new prediction models to evaluate them using a information
theoretic approach.

7. ACKNOWLEDGMENT
The authors would like to thank Ahmed Hassan. This paper
would not have been possible without his generous help and his
data. We also would like to thank the referees for their
extremely helpful suggestions.

8. REFERENCES
[1] Allen, J. F. Using Entropy for Evaluating and Comparing

Probability Distributions, available at:
http://www.cs.rochester.edu/u/james/CSC248/Lec6.pdf

[2] Basili, V. R., and Perricone, B. Software errors and
complexity: An empirical investigation. Communications
of the ACM, 27(1):42 – 52, 1984.

[3] Eick, S. G., Graves, T. L., Karr, A. F., Marron, J.S., and
Mockus, A. Does Code Decay? Assessing the Evidence
from Change Management Data. IEEE Trans. on Software
Engineering, 27(1):1–12, 2001.

[4] Eick, S.G., Graves, T.L., Karr, A.F., Mockus, A., Schuster,
P. Visualizing Software Changes, IEEE Trans. on Software
Engineering, vol. 28, no. 4, pp. 396-412, April, 2002.

[5] Gall, H., Hajek, K., and Jazayeri, M. Detection of logical
coupling based on product release history. In Proceedings
of the 14th International Conference on Software
Maintenance, Bethesda, Washington D.C., November
1998.

[6] Graves, T. L., Karr, A. F., Marron, J. S. and Siy, H. P.
Predicting fault incidence using software change history.
IEEE Trans. on Software Engineering, 26(7):653–661,
2000.

[7] Hassan, A. E., Mining Software Repositories to Assist
Developers and Support Managers. PhD Thesis, University
of Waterloo, Ontario, Canada, 2004

[8] Hassan, A. E. and Holt, R. C., The Top Ten List: Dynamic
Fault Prediction, Proceedings of ICSM 2005: International
Conference on Software Maintenance, Budapest, Hungary,
Sept 25-30, 2005.

[9] Khoshgoftaar, T. M., Allen, E. B., Halstead, R., Trio, G. P.
and Flass, R. M. Using Process History to Predict Software
Quality. Computer, 31(4), 1998.

[10] Khoshgoftaar, T. M., Allen, E. B., Jones, W. D., and
Hudepohl, J. P. Data Mining for Predictors of Software
Quality. International Journal of Software Engineering and
Knowledge Engineering, 9(5), 1999.

[11] Manning, C. and Schütze, H. Foundations of Statistical
Natural Language Processing, MIT Press. Cambridge, MA:
May 1999.

[12] Mockus, A. and Votta, L. G. Identifying reasons for
software change using historic databases. In International
Conference on Software Maintenance, pages 120-130, San
Jose, California, October 11-14 2000

[13] Mockus, A., Weiss, D. M., and Zhang, Ping.
Understanding and predicting effort in software projects. In
2003 International Conference on Software Engineering,
pages 274-284, Portland, Oregon, May 3-10 2003. ACM
Press.

[14] Ostrand, T. J., Weyuker, E. J., Bell, R. M. Predicting the
Location and Number of Faults in Large Software Systems.
IEEE Trans. Software Eng. 31(4): 340-355 (2005)

[15] Pareto Law: http://www.it-cortex.com/Pareto_law.htm
[16] Perry, D. E. and Evangelist, W. M. An Empirical Study of

Software Interface Faults — An Update. In Proceedings of
the 20th Annual Hawaii International Conference on
Systems Sciences, pages 113–136, Hawaii, USA, January
1987.

[17] Perry, D. E. and Steig, C.S. Software Faults in Evolving a
Large, Real-Time System: a Case Study’. In Proceedings
of the 4th European Software Engineering Conference,
Garmisch, Germany, September 1993.

[18] Reliability Analysis Center, Introduction to Software
Reliability: A state of the Art Review. Reliability Analysis
Center (RAC), 1996. http://rome.iitri.com/RAC/

[19] Zimmermann, T., Weissgerber, P., Diehl, S., Zeller, A.
Mining Version Histories to Guide Software Changes,
IEEE Trans. on Software Engineering, vol. 31, no. 6, pp.
429-445, June, 2005.

[20] Zipf, G. K. Human Behavior and the Principle of Least
Effort.Addison-Wesley, 1949.

132

Tracking Defect Warnings Across Versions

Jaime Spacco�, David Hovemeyer�, William Pugh�

�Dept. of Computer Science
A. V. Williams Building
University of Maryland
College Park, MD 20742 USA

�jspacco,pugh�@cs.umd.edu

�Dept. of Computer Science
Vassar College
124 Raymond Ave.
Poughkeepsie, NY 12604 USA

hovemeyer@cs.vassar.edu

ABSTRACT
Various static analysis tools will analyze a software artifact in order
to identify potential defects, such as misused APIs, race conditions
and deadlocks, and security vulnerabilities. For a number of reasons,
it is important to be able to track the occurrence of each potential
defect over multiple versions of a software artifact under study: in
other words, to determine when warnings reported in multiple ver-
sions of the software all correspond the same underlying issue. One
motivation for this capability is to remember decisions about code
that has been reviewed and found to be safe despite the occurrence
of a warning. Another motivation is constructing warning deltas be-
tween versions, showing which warnings are new, which have per-
sisted, and which have disappeared. This allows reviewers to focus
their efforts on inspecting new warnings. Finally, tracking warnings
through a series of software versions reveals where potential defects
are introduced and fixed, and how long they persist, exposing inter-
esting trends and patterns.

We will discuss two different techniques we have implemented
in FindBugs (a static analysis tool to find bugs in Java programs)
for tracking defects across versions, discuss their relative merits and
how they can be incorporated into the software development process,
and discuss the results of tracking defect warnings across Sun’s Java
runtime library.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Diagnostics, Symbolic Execution;
D.2.2 [Design Tools and Techniques]: Programmer workbench

General Terms
Human Factors, Languages, Verification

Keywords
FindBugs, Java, bug histories, bug tracking, static analysis

1. INTRODUCTION
There are many tools that perform static analysis of software to

detect possible software defects. Each of these tools looks for some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

mixture of security vulnerabilities, coding errors, poor programming
practice and style violations.

It is naive to assume that after software is analyzed, the software
will be immediately modified to eliminate all of the warnings gen-
erated by the static analysis tool. Much more typically, developers
will choose, for some reason or another, to change the code in re-
sponse to only a some of the warnings. Even if a static analysis tool
is based on precise and sound reasoning, warnings have to compete
with other demands on the developers time, and minor problems may
not be worth fixing if there is a chance that a change may introduce
an incompatibility or some new, more serious defect.

Thus, when the next version of the software is built and analyzed,
many of the warnings will reflect issues from the previous version
that were not addressed, while other warnings will correspond to
new issues. Being able to pair up warnings generated from analyzing
different builds of software is a vitally important task. It is not par-
ticularly difficult, but it has not been studied or discussed at length
in the literature. In our work on the FindBugs static analysis tool [5,
3] we have implemented techniques and tools for tracking warnings
across versions. In recent discussions with Fortify Software [4] we
found that their approach to the problem is substantially different
than the one we used in FindBugs. We have now implemented both
approaches within FindBugs, and in this paper we describe them and
report on their relative strengths and weaknesses.

2. THE PROBLEM
First, we need to identify the problem we wish to solve a little

more precisely. There are actually a number of similar use cases,
which are all largely addressed using the same techniques:

� Assume that a particular version of software was analyzed,
generating a list of warnings about potential defects. Some of
these warnings were audited, with some of them being flagged
as harmless and others being flagged as serious problems (but
perhaps not yet fixed). When a new version of the software
is analyzed, we want to be able to associate the audit results
from the previous analysis with the issues raised by analyz-
ing the current version of the software. Thus, we can ignore
the issues previously marked as harmless, and ensure that the
ones previously marked as important continue to be flagged as
important.

� A similar problem, except more decentralized. The develop-
ment team might currently be working on build b55, while at
the same time one security team is auditing build b48 of the
servlet library, and another security team is auditing b50 of
the persistence library. How do the two security teams relay
their findings to the development team?

� A development team has just started using static analysis tools,

133

and the tool generates more than 300 serious warnings. The
team doesn’t have time to review all of the issues, so they want
to review only the new warnings—those that did not occur in
previous versions of the software.

3. MATCHING WARNINGS IN FINDBUGS

3.1 Pairing
The first and primary form of matching implemented in FindBugs

is based on pairing warnings. We start with two sets of warnings. We
then try to match up warnings with a progressively “fuzzier” series
of WarningMatchers. Each matching object provides a hash function
and equivalence predicate for warnings, with a property that for any
WarningMatcher m, and warnings w1 and w2, m.equivalent(w1,w2)
implies m.hashCode(w1) = m.hashCode(w2). We first start with a
very precise warning matcher, which only considers two warnings
the same if all recorded details about them are identical.1

The first matcher will generally pair up and remove from consid-
eration that vast majority of warnings. We then apply fuzzier match-
ers, which allow for source lines to vary. If there are collisions (e.g.,
two warnings from version A and two warnings from version B both
match), we pair them up according to their lexicographical order in
the warning database, which is determined by the lexicographical
order of named elements such as classes, fields, and methods, and
by the order of the byte code offsets of any source line references.

As we move to even fuzzier matching algorithms, we look for
package renaming. If, in one version, there is a warning in class
org.apache.Foo, and in the next version there are no classes in the
org.apache package, but there is a new package com.sun.org.apache
containing a Foo class, we consider that to be a package renaming
and allow warnings in the org.apache.Foo class to be matched to
com.sun.org.apache.Foo.

At the moment, we do not try to accommodate refactorings that
would move a bug warning from one method to another, even in
trivial cases such as renaming a method.

3.2 Warning signatures
A second approach to matching warnings is warning signatures.

For warning signatures, we compute, for each warning, a string in-
cluding the names of classes, fields, and methods involved in the
warning, but excluding source locations. We then compute the MD5
hash of the string and represent the hash value in hexadecimal so
that all warning signatures are a consistent length.

The significant problem here is how to handle collisions: two dif-
ferent warnings producing the same MD5 hash. We do not expect
actual MD5 collisions—different strings producing the same MD5
hash—to be an issue. Rather, the problem is what if, for example,
the tool finds two possible SQL injections in the same method, such
that everything other than the source line offsets (which are ignored
by the signature computation) are identical?

As of version 3.5, Fortify Software used a similar mechanism for
computing warning signatures, but upon collision they simply re-
hashed the signature: in other words, computing the MD5 hash of
the original MD5 hash. We felt that this was a bad choice, since
it makes it exceedingly difficult to recover information about where
potential collisions occurred.

In our first implementation of warning signatures in FindBugs
(available in FindBugs version 0.9.5), we compute occurrence num-
bers for each warning. Assuming there are no collisions, each warn-

1Any source locations here are denoted by bytecode offsets rather
than source lines, because bytecode offsets are not affected by
changes to methods elsewhere in the file.

0 20 40 60 80 100 120

BC

DE

EC

HE

HE

HE

HE

HE

HE

IL

MF

NP

NP

NP

RCN

RCN

RV

SE

SE

SE

SE

SE

SE

Figure 1: Lifetimes of high priority correctness warnings in
Sun’s JDK

ing gets an occurrence number of zero. If there are collisions, suc-
cessive occurrence numbers are generated (in order of byte code off-
set for the first source line annotation). Thus, by concatenating the
warning signature and the occurrence number, we get a string that
is guaranteed to be unique for any collection of warnings. When
matching warning signatures across versions, we know that any warn-
ings with a non-zero occurrence number indicate a collision, and
possible mismatching of warnings.

In reviewing the places where FindBugs can generate multiple
warnings per method, we found that in many cases the warnings
were all related, and it made sense to only report one such warning
per method. Thus, a number of bug pattern detectors were changed
so that they would report at most once per method, but each warning
would contain a list of all the source lines where the issue arose.
This allows correct matching without collisions, even if the number
sub-issues or their source line offsets change between versions.

4. RESULTS OF TRACKING DEFECTS US-
ING FINDBUGS

4.1 Sun’s JDK
We have a reasonably complete history of the core runtime li-

brary (rt.jar) from releases of the Sun Java Development Kit (JDK),
including 116 sequential builds, starting with release 1.0.2, and in-
cluding bi-weekly or weekly beta builds of the 1.5.0 and 1.6.0 JDKs.
We analyzed the longest possible sequence of versions where both
release date and version number increased monotonically: in other
words, once we analyzed b12 of 1.6.0, the first publicly released
build, we didn’t analyze any later builds in the 1.5 branch.

4.1.1 Warning lifetimes
Figure 1 shows the lifetimes of all the high priority correctness

warnings across all versions of the JDK that we analyzed, exclud-
ing 5 other miscellaneous warning types that did not fall into any
category large enough to depict in the figure. The ticks on the x-
axis correspond to successive builds of the JDK. Each horizontal
line corresponds to one warning and stretches from the build where
the warning was first detected to the last build in which it existed.
The defect warnings are grouped by FindBugs bug type (e.g., IL is
an infinite recursive loop).

There are several interesting things to note about this diagram.
First, there are builds where bulk changes occur; where many defects
are introduced or fixed. The JDK development process includes a
fair bit of parallel development, and many of these places represent

134

Source statements and H/M correctness warnings for Sun's JDK

0

200

400

600

800

1000

1200

1400

1600

1800

1
.0
.2

1
.1
.8
-0
0
5

1
_
3
_
0

1
_
3
_
1
_
0
3

1
.4
.0
-b
7
0

1
.4
.0
-b
7
6

1
.4
.0
-b
8
4

1
.4
.1
-b
0
6

1
.4
.1
-b
1
2

1
.4
.1
_
0
1

1
.4
.2
-b
0
8

1
.4
.2
-b
1
4

1
.4
.2
-b
1
9

1
.4
.2
-b
2
8

1
.4
.2
_
0
2

1
.4
.2
_
0
5

1
.5
.0
-b
1
2

1
.5
.0
-b
1
8

1
.5
.0
-b
2
4

1
.5
.0
-b
3
0

1
.5
.0
-b
3
8

1
.5
.0
-b
4
4

1
.5
.0
-b
5
0

1
.5
.0
-b
5
6

1
.5
.0
-b
5
9

1
.5
.0
-b
6
4

1
.6
.0
-b
1
4

1
.6
.0
-b
1
7

1
.6
.0
-b
2
3

1
.6
.0
-b
2
8

1
.6
.0
-b
3
1

1
.6
.0
-b
3
4

1
.6
.0
-b
3
7

1
.6
.0
-b
4
0

1
.6
.0
-b
4
3

1
.6
.0
-b
4
6

1
.6
.0
-b
4
9

1
.6
.0
-b
5
2

1
.6
.0
-b
5
5

1
.6
.0
-b
5
8

1
.6
.0
-b
6
1

1
.6
.0
-b
6
4

1
.6
.0
-b
6
7

Build

KNCSS Warnings

Figure 2: Code size and number of defect warnings in Sun’s JDK

places where updates to particular packages are being integrated into
the main branch.

Also, the majority of the high-priority defects we found using
FindBugs have been fixed. We found one bug pattern, infinite re-
cursive loops, to be so compelling and amusing that we filed bug
reports on all of the infinite recursive loops we found. All of those
have been fixed, save one. That bug originated in build 1.3.0, more
than 5 years ago, and we believe the reason that bug remains un-
fixed is that the code is stable without an active group developing or
maintaining it.

4.1.2 Code size and defect density
Figure 2 shows the size of the JDK builds over time, and the num-

ber of both medium and high priority correctness warnings existing
in each build.

The size of the JDK builds is given in thousands of non comment-
ing source statements. For most classes, this is computed from the
table associated with each method that maps byte code offsets to
source line number. Since there is only one entry per statement, this
correctly handles whitespace and statements that spread over sev-
eral lines. In the few cases where we analyze classfiles that do not
contain line number tables, we extrapolate from the empirically ob-
served value of 10 bytecodes per non commenting source statement.

Over time, we observe a warning density that grows from about
1 warning per KNCSS in early builds to 2 warnings per KNCSS.
However, this does not necessarily reflect that the quality of the JDK
codebase has decreased over time. Rather, the warnings in a build
correspond both to unfixed defects and false positives. Because false
positives accumulate over time (since they do not warrant corrective
action to the code) we would expect that the total combined den-
sity of false positives and defects would grow over time, even if the
defect density remains constant.

4.1.3 Defect warning decay over time
In Figure 3, we show the number of correctness warnings in each

build of the JDK that satisfies the following:

� The defect was first reported before 1.4 builds

� The defect did not disappear because the class that contained
it disappeared

� The defect was not a warning about classes that are not serial-
izable.

The warnings about non-serializable classes were excluded since
a systematic effort was made at Sun to add serialVersionUID fields
to all the classes that might need them; this resolved several hundred
medium priority issues and would otherwise swamp the results. We
exclude the defects in removed classes because their removal gives
us very little information about why the warning was removed.

From this, we can see that over time, more than half of the high
and medium priority correctness warnings are removed. The fact
that a lesser portion of the low priority warnings are removed over
time gives us reason to believe that this is due to reasons other than
code churn, and that the issues we identify as high and medium pri-
ority correctness issues are more likely to be things that developers
independently determine to need fixing than low priority warnings.

4.1.4 The java.util experience
The java.util package, which contains various classes such as the

Collections libraries, is some of the most carefully scrutinized Java
code in Sun’s JDK implementation. It has been widely reviewed,
and has largely been written by two developers, Joshua Bloch and
Martin Buchholz, who are highly skilled and highly dedicated to
getting their code correct. They also use and advocate the use of
the FindBugs tools, and there has been substantial discussion be-
tween the FindBugs team and the maintainers of the java.util pack-
age. We file a bug report on every defect that FindBugs finds in the
java.util package, and also examine every false positive generated by
FindBugs on this package. We have not tuned FindBugs to specifi-
cally exclude any false positives we might generate on java.util, al-
though we do look for reasons we report false positives in java.util
that might be more widely applicable.

Given this background, it is useful to see how FindBugs performs
on the java.util package. In the latest build of JDK 1.6.0 (build
69), the java.util package consists of 273 classes and 18,765 non-
commenting source statements; using wc to total lines in source
files gives 59,175 source lines. As of build 1.6.0-b69, FindBugs
identifies 4 warnings in java.util. Of these, one is a real and seri-
ous defect which will be fixed before the 1.6 release. The remaining
3 are false positives. FindBugs generates 23 warnings in previous
versions of the java.util that are no longer generated in the current
version. These results suggest both

� in comparing the density of both active and dead defect warn-
ings, the java.util package has a defect density less than half
of that of the JDK overall,

135

Decay of high and medium priority correctness warnings

0

50

100

150

200

250
1
.0
.2

1
.2
.1
_
0
4

1
_
3
_
1

1
.4
.0
-
b
7
0

1
.4
.0
-
b
7
7

1
.4
.1
-
b
0
4

1
.4
.1
-
b
1
2

1
.4
.2
-
b
0
4

1
.4
.2
-
b
1
2

1
.4
.2
-
b
1
9

1
.4
.2

1
.4
.2
_
0
4

1
.5
.0
-
b
1
2

1
.5
.0
-
b
2
0

1
.5
.0
-
b
2
8

1
.5
.0
-
b
3
8

1
.5
.0
-
b
4
6

1
.5
.0
-
b
5
5

1
.5
.0
-
b
5
9

1
.6
.0
-
b
1
2

1
.6
.0
-
b
1
6

1
.6
.0
-
b
2
3

1
.6
.0
-
b
2
9

1
.6
.0
-
b
3
3

1
.6
.0
-
b
3
7

1
.6
.0
-
b
4
1

1
.6
.0
-
b
4
5

1
.6
.0
-
b
4
9

1
.6
.0
-
b
5
3

1
.6
.0
-
b
5
7

1
.6
.0
-
b
6
1

1
.6
.0
-
b
6
5

1
.6
.0
-
b
6
9

dead active

Decay of low priority correctness warnings

0

50

100

150

200

250

300

1
.0
.2

1
.1
.8
-
0
0
5

1
_
3
_
0

1
_
3
_
1
_
0
3

1
.4
.0
-
b
7
0

1
.4
.0
-
b
7
6

1
.4
.0
-
b
8
4

1
.4
.1
-
b
0
6

1
.4
.1
-
b
1
2

1
.4
.1
_
0
1

1
.4
.2
-
b
0
8

1
.4
.2
-
b
1
4

1
.4
.2
-
b
1
9

1
.4
.2
-
b
2
8

1
.4
.2
_
0
2

1
.4
.2
_
0
5

1
.5
.0
-
b
1
2

1
.5
.0
-
b
1
8

1
.5
.0
-
b
2
4

1
.5
.0
-
b
3
0

1
.5
.0
-
b
3
8

1
.5
.0
-
b
4
4

1
.5
.0
-
b
5
0

1
.5
.0
-
b
5
6

1
.5
.0
-
b
5
9

1
.5
.0
-
b
6
4

1
.6
.0
-
b
1
4

1
.6
.0
-
b
1
7

1
.6
.0
-
b
2
3

1
.6
.0
-
b
2
8

1
.6
.0
-
b
3
1

1
.6
.0
-
b
3
4

1
.6
.0
-
b
3
7

1
.6
.0
-
b
4
0

1
.6
.0
-
b
4
3

1
.6
.0
-
b
4
6

1
.6
.0
-
b
4
9

1
.6
.0
-
b
5
2

1
.6
.0
-
b
5
5

1
.6
.0
-
b
5
8

1
.6
.0
-
b
6
1

1
.6
.0
-
b
6
4

1
.6
.0
-
b
6
7

dead active

Figure 3: Decay over time of defect warnings introduced before
1.4 builds

� with more attention to improving code quality and improv-
ing FindBugs, the ratio that 8 out of 9 of the issues identified
by FindBugs are ones that developers believe should be fixed
should be more widely reproducible.

5. SOFTWARE EVOLUTION
Two common software engineering practices, creating or merging

branches in a repository and renaming packages, create difficulties
that the two warning-matching techniques handle differently.

5.1 Non-linear branches
As software evolves, developers need to branch repositories into

separate development streams, or merge separate repositories into
a single development stream. For example, a version of the JDK-
1.4 was branched to provide a starting point for the development of
JDK-1.5, while Doug Lea’s util.concurrent library was merged into
the JDK as java.util.concurrent.

However, after a branch for a new version is created, maintenance
on the branch for the old version continues in parallel for some
amount of time, often months or year. Similarly, maintenance can
continue on a module after it is merged into another repository.

In this environment, a developer who encounters a bug warning
needs to know if the same issue occurs in any other branches of the
development process, because the issue may already have been fixed
or marked as a false positive on a different branch.

The two techniques for matching warnings, pairing warnings and
warning signatures, handle this problem differently, with advantages
and disadvantages to each approach.

The algorithm for pairing warnings used by FindBugs was de-
signed with a linear sequence of software versions in mind. Pairing
warnings is more fine-grained than warning-signatures in that it can
determine, for example, which potential null-pointer dereference in
a method was fixed between two versions. This type of fine-grained

information is very useful to a developer actively working on a linear
branch who needs detailed information about bug warnings in order
to best focus his resources.

However, the pairing implementation currently assumes that the
lifespan of a warning is defined by the version in which it is intro-
duced and the last version in which it still exists; there is currently
no support for a warning with a set of disjoint lifespans. Thus, as
it is currently implemented it would be difficult to use the pairing
approach to match warnings between branches of software. In the
future we hope to improve the matching algorithm to address this
limitation.

The warning-signatures approach used by Fortify Software com-
putes a unique hash for each instance of a warning based on a string
representation of the name of the bug pattern and the name of the
method and classfile in which it occurs. If there are collisions, the
string value is simply re-hashed to resolve the collision. A major
benefit is that the hash can easily be used to find warnings in ear-
lier versions of a linear development stream as well as in separate
branches of parallel development.

The major drawback to this approach is that collisions cause the
analysis to lose information about which bugs are fixed. Because
the hashes don’t take into account line number information or byte-
code offsets, there is no way to determine which bug warning was
removed between versions of code: it will always appear as if the
second (re-hashed) value was removed.

Thus, the warning-signatures approach is more appropriate for de-
velopers who need to fix bugs across branches of software, or who
need to integrate branches of software together.

6. CONCLUSION
The issue of matching warnings between versions has only re-

cently been addressed, perhaps because many people assumed the
problem was easy and focused their attention on building new bug
detectors instead. However, as we’ve illustrated in this paper, match-
ing warnings is a tricky, interesting problem that needs to be properly
addressed for static error checkers to find their way into mainstream
software design. In addition to the obvious practical applications
(false positive suppression, applying audit results between versions,
and construction of warning deltas), studying the lifecycle of defect
warnings provides an interesting new perspective on code evolution.

The lack of previous attention paid to the issue is reflected by
the fact that several approaches have appeared, each with its own
relative advantages and disadvantages, but nobody has studied the
various approaches or tried to unify them into a common framework
that leverages the advantages of each approach.

7. RELATED WORK
A recent thread on Slashdot [1] discusses the difficulties involved

in handling bug reports across branches for bug reporting systems
such as Bugzilla [2]. However, we are not aware of published work
on this subject.

8. REFERENCES
[1] Bug tracking across multiple code streams?

http://ask.slashdot.org/article.pl?sid=05/10/
06/2248259&tid=128, 2006.

[2] bugzilla.org. http://www.bugzilla.org/, 2006.
[3] FindBugs—Find Bugs in Java Programs.

http://findbugs.sourceforge.net, 2006.
[4] Fortify Software. http://www.fortifysoftware.com, 2006.
[5] D. Hovemeyer and W. Pugh. Finding Bugs is Easy. In Companion of

the 19th ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Vancouver, BC, October 2004.

136

Mining Email Social Networks ∗

Christian Bird, Alex Gourley,
Prem Devanbu, Michael Gertz

Dept. of Computer Science, Kemper Hall,
University of California, Davis,

Davis, California Republic.

cabird,devanbu@ucdavis.edu

Anand Swaminathan
Graduate School of Management,

University of California, Davis,
Davis, California Republic.

aswaminathan@ucdavis.edu

ABSTRACT
Communication & Co-ordination activities are central to
large software projects, but are difficult to observe and study
in traditional (closed-source, commercial) settings because
of the prevalence of informal, direct communication modes.
OSS projects, on the other hand, use the internet as the
communication medium, and typically conduct discussions
in an open, public manner. As a result, the email archives
of OSS projects provide a useful trace of the communica-
tion and co-ordination activities of the participants. How-
ever, there are various challenges that must be addressed
before this data can be effectively mined. Once this is done,
we can construct social networks of email correspondents,
and begin to address some interesting questions. These in-
clude questions relating to participation in the email; the
social status of different types of OSS participants; the rela-
tionship of email activity and commit activity (in the CVS
repositories) and the relationship of social status with com-
mit activity. In this paper, we begin with a discussion of
our infrastructure and then discuss our approach to mining
the email archives; and finally we present some preliminary
results from our data analysis.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Empirical, Open
Source

General Terms
Human Factors, Measurement

Keywords
Open Source, Social Networks

∗We gratefully acknowledge support from NSF Humanities
and Social Sciences Division, Grant Number SES 0525263.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06,May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

1. INTRODUCTION
Large-scale software development projects invariably re-

quire a lot of communication and coordination (C&C) am-
ongst the project workers. We distinguish these activities
from engineering activities, where actual artifacts such as
source code or documents are modified. The difficulty and
intensity of the required coordination effort is quite high;
this is often cited as the reason why adding more developers
doesn’t necessarily speed-up development [4]. C&C activi-
ties influence (and are influenced by) the design, structure
and evolution of software systems. In traditional, commer-
cial software organization, C&C activities may occur infor-
mally, and would be difficult to study. Even if coordination
and communication are computer-mediated, the traces of
these activities are usually not made public by commercial
organizations. Open-source software (OSS) projects on the
other hand, inherently conduct all their activities in pub-
lic, and in fact, this public, open enactment is key to their
success [16, 11]. In particular, every open-source project
includes one or more public mailing lists wherein project
stakeholders can communicate and coordinate their activi-
ties. The entire trace of these mailing lists are archived and
available for study.

These archives, along with the versioned source code repos-
itories and other on-line artifacts constitute a unique and
valuable resource for the study of C&C activities in software
projects. There is at UC Davis an interdisciplinary effort to
mine this resource, and use the resulting data to study the
relationship with C&C activities in OSS projects, and the
actual development activities. In this paper, we describe
our experiences with this effort, and some early results. We
begin first with a description of the phenomena that we are
mining; then we describe our data extraction tools; finally,
we present an early look at the data.

2. CHATTERERS & CHANGERS
A mailing list in an OSS project is a public forum. Anyone

can post messages to the list. Posted messages are visible
to all the mailing list subscribers. Posters to mailing lists
include developers, bug-reporters, contributors (who sub-
mit patches, but don’t have commit privileges) and ordinary
users. Mailing lists can be quite active; for example, on the
Apache developer mailing list, there were about 4996 mes-
sages in the year 2004 and 2340 in 2005. For gcc, these num-
bers were 19173 and 15082. Over the lifetime of the project,
we estimate that over 2000 distinct individuals have sent
messages to the Apache developer list. A subscriber may

137

respond to a message on the public forum, which then be-
comes visible to everyone. Roughly 73% of messages elicit
response messages. A response b to a message a is an in-
dication that the sender of b, (sb) found that the sender of
a, (sa) had something interesting to say; thus the response
from sb indicates that the original message a represented
information flowing from sa to sb It is also an indication of
status, i.e., sb indicates that s/he found sa’s email worth
reading, and worthy of response.

The level of activity of developers on the mailing list varies
dramatically. The most active developer on the mailing list
sent 4486 messages during the life of the project. The least
“chatty” developer sent just 10 messages. There were, of
course, non-developers who sent just one message. Mes-
sages reflect communication interactions between develop-
ers. Some developers have a great many interactions: one
developer’s emails had responses from 254 distinct individ-
uals. Likewise, another developer replied to messages from
281 distinct individuals. However, the vast majority of indi-
viduals particpating on the email list sent very few messages,
and received very few replies to their messages. This type of
“Pareto” distribution is common in social phenomena [14].

The community on the Apache developer mailing list is
concerned primarily with software, and so the question nat-
urally arises as how email activity relates with development
activity. This activity can be conveniently recovered from
the versioned source code repository (CVS in this case). As
has been reported in earlier research [8] on Linux, develop-
ment activity, as recorded in CVS, also shows a few devel-
opers doing the bulk of the work.

Our research goal is to study the relationship of the C&C
activities of developers, as revealed in the email archives,
to their software development activity. Specifically, we are
interested in how the activities and connections between de-
velopers on the mailing list relate to their development ac-
tivity in the source code. We are interested in the following
types of questions:

• What are the properties of the social network of devel-
opers?

• Are developers who send a lot of messages on the mail-
ing list also very active in source code changes?

• Do developers play a different role than non-developers
in the social network?

• Do the most active developers have the highest status
among developers ?

Unfortunately, answering these types of questions requires
facing some challenges in data extraction, primarily having
to do with resolving aliasing issues on the email archives and
cvs archives.

3. OF DOGS AND DEVELOPERS
“On the Internet, no one knows if you’re a Dog” —so goes

the famous New Yorker Cartoon. It is difficult (and some-
times impossible) to determine the identity of individuals
who correspond on mailing lists using aliases. The same in-
dividual can use different email aliases. For example the
developer Ian Holsman uses 7 different email aliases, in-
cluding ian.holsman@cnet.com, ianh@holsman.net, and ianh@-

apache.org
1. Sometimes aliases have very little relation-

ships to developers (or dogs): the developer Ken Coar uses
the name Rodent of unusual size associated with email ad-
dress ken.coar@golux.com. Ignoring these aliases and treat-
ing these as distinct email personalities would confound later
steps of data analysis. Likewise, when cvs comments are
made, developers use a cvs account name. Fortunately,
since access and accounts to cvs are controlled centrally,
there is less of an aliasing problem with cvs account names.
However, in order to relate email activity and program-
ming/development activity, we must correlate email names
with cvs account names. Given the possibility of choosing
arbitrary aliases, one can make two important observations:
first, an individual determined to maintain an anonymous
alias can always do so2 ; second, any automated algorithm
for resolving aliases will be inexact, and must be supple-
mented by subsequent manual analyses.

We now describe our hybrid automated/manual approach
to resolving aliases

3.1 Unmasking Aliases
Most emails include a header that identifies the sender, of

this form:

From: "Bill Stoddard" <reddrum@attglobal.net>

This header reveals immediately the problem—Bill Stod-
dard, who here uses the handle reddrum is actually also bill@-
wstoddard.com. But how can we know that?
Overview: Our first step in resolving aliases is to auto-
matically crawl messages and extract all such headers to
produce a list of < name, email > identifiers (IDs). Once
this is done, we execute a clustering algorithm that measures
the similarity between every pair of IDs. This could occur if
either the names are similar, or if the emails are similar, or
if the names and the emails are similar (the precise details of
the algorithm are explained below). IDs that are sufficiently
similar are placed into the same cluster. Once clusters are
formed, they are manuall post-processed.
Apache Summary: In the case of the Apache developer
mailing list, we began with 2544 separate IDs. The cluster-
ing algorithm produced 1581 clusters. The largest of these
had 70 members, the next biggest 55, and so on; finally,
there were 163 doubles, and 1271 singletons. Naturally,
these clusters contained errors, and had to be manually post-
processed. Mindful of the need for manual post-processing,
we deliberately set the cluster similarity threshold quite low:
it is much easier during a manual step to split clusters than
to unify two disparate clusters from a very large set. Manual
processing of the 1581 clusters produced 2012 distinct indi-
viduals, some of whom have many aliases. One noteworthy
example is Rasmus Lerdorf, with 11 aliases:

rasmus@apache.org,

rasmus@bellglobal.com,

rasmus@lerdorf.ca,

rasmus@lerdorf.com,

rasmus@lerdorf.on.ca,

rasmus@linuxcare.com,

1Email addresses are used with permission from the mail-
inglist participants.
2The identity of the infamous “David who wishes to remain
anonymous”, who spammed several email lists, offering to
post personal adverts in Ukraine, was not easily found.

138

rasmus@madhaus.utcs.utoronto.ca,

rasmus@mail1.bellglobal.com,

rasmus@php.net,

rasmus@raleigh.ibm.com,

rasmus@vex.net.

Five of these were discovered using the Name Similarity rule
(described below); the other six were put into this cluster
because of the Email similarity rule. Paul Richards was
another promiscuous email masquerader, with 10 aliases.
Subsequent random sampling of the clusters by one of the
authors (who didn’t do the manual filtering) revealed no
discernible errors (see caveat on this later).
Clustering Algorithm: This algorithm takes a flat list
of IDs and clusters them (recall that an ID is a <
name, email > tuple). The first step is create pairwise
similarity measures for every pair of IDs. Two IDs with
similarity measure exceeding an empirically set threshold
are placed into the same cluster. The similarity measure is
computed by proceeding as follows:

1. Normalize name: We remove all punctuation, suffixes
(“jr”); turn all whitespace into a single space; remove
generic terms like “admin”, “support”, from the name;
we also split the name (using whitespace and commas
as cues) into first name and last name.

2. Name Similarity: We use a scoring algorithm based on
the Levenshtein edit distance [5, 13, 17] between the
full names, and the first and last names separately. We
consider names similar if the full names are similar, or
if both first and last names are similar. Thus, Andy
Smith is similar to Andrew Smith, but Deepa Patel is
dissimilar to Deepa Ratnaswamy. This is a very pro-
ductive rule for identifying clusters of similar emails.

3. Names-email Similarity: Two IDs are also scored
highly similar if the emails and names match. If
the email contains both first and last names (and the
lengths of the names are at least 2 characters) we con-
sider them matched. Also, if the email contains the
initial of one part of the name and entirety of the other
part, then it is considered a match. Thus Erin Bird
matches erinb and ebird.

4. Email Similarity: If the Levenshtein edit distance be-
tween two email address bases (not including the do-
main, after the ”@”) is small, two emails are considered
similar (as long as the two bases at least 3 characters
long)

5. Cumulative ID similarity: The similarity between two
IDs is the maximum of the 3 mentioned above. This
generous rule creates larger clusters; however, split-
ting too-large clusters is easier than unifying smaller
clusters (from a very large number of clusters).

The Cumulative ID similarity is computed for all pairs of
IDs; IDs with similarity exceeding a threshold are placed
into clusters. The clusters are then manually post-processed
as described above. The final results produced were hand-
inspected by another member of the team, and appears to
be free of evident errors. Of course, given the possibility of
choosing arbitrary aliases, such manual inspection is fallible.
In future work, we will undertake a more formal, sampling-
based techniques technique for determining bounds on the

error rates in our results. We propose to email a randomly
chosen subset of individuals on the list, and ask them if the
set of aliases we have found for them is accurate. Assuming
that mis-classification errors are uniformly distributed in our
clusters, we should be able to calculate confidence intervals
on the actual error rate in our clusters.
CVS alias resolution: We use a similar approach to re-
solving cvs account names to email aliases. Similarity met-
rics are calculated on all pairs of mailing list aliases and
CVS names. The final matched list is hand-inspected, also
as described above; the same caveats apply, and in future
work, we will use the same random sampling approach to
statistically bound the errors in our results.

3.2 Data Extraction
We gathered data by parsing the email activity on the

Apache HTTP Server Developer mailing list over a period
starting in 1999 to the current date. Earlier email data
was not included because we do not have version-control
information before then; we only used the email data for
the period during which the source code change data was
also available. For every email, we extracted from the email
header the message identifier, the sender, the sent time, and
the identifier of the message (if any) to which this message
was a reply. When a reply-to header was found, the sender
s of the reply was someone who found the initial message of
interest; and so the sender s was marked as a recipient of
the original message. In this way, we were able to extract
communication links between pairs of individuals.

We were able to parse 101,637 messages out of 102,611
messages in the mailing list. A small proportion of mes-
sages could not be parsed, because of malformed headers.
Approximately 1.3% of the messages were in this category.
Malformed headers can fail to provide a message identifier,
and can also fail to provide a reply-to identifier. This could
be due to misbehaving email clients. We are working on
ways to rectify this problem. Quoted text content (as done
in [1]) is one approach, whereby one message is identified as
a reply if it quotes text from another. Meanwhile, we believe
that our results are reasonably robust, and would not be af-
fected much when these (currently unparseable) messages
are included in the analysis.

4. DESCRIPTION: SMALL WORLD
The distributions of the data that are shown in Figure 1

describe the behavior of the participants of the email list.
Each is a histogram showing the number of people exhibiting
a particular kind of behavior. The character of the distribu-
tions is consistent with previously observed social phenom-
ena, and show the typical long-tailed characteristic in the
log-log domain plot.

139

Figure 1: Note that all diagrams are log-log scale. Reading left to right: first, the distribution of people vs.
number of messages they sent; next, vs. the number of reply messages they received. Note that a few people
account for the bulk of the sending & reply activity. The next two indicate the structure of the social network.
First, the out-degree in the social network; finally, vs. the in-degree in the social network. Out degree is
an indication of status, as it indicates the number of different people who replied to the ego’s messages.
In-degree indicates the number of different people whose messages ego responded to. All distributions show
power-law character. The degree distributions show small-world character of the email social network.

The first shows a histogram of message-sending behaviour.
The vast majority of people send only one message, and
there are some who send a great many. The second is the
histogram of message replying behavior. The next two are
based on the social network, where an individual sa has a
link to an individual sb if sb replied to a message from sa.
Higher out-degree for sa is an indication of higher status,
since more individuals have found messages from sa of in-
terest. Individuals whose messages attracted no replies were
excluded from this graph. Out-degree also shows a scale-
free, or power-law distribution, characteristic of small-world
social networks [2, 9, 10, 15]. In-degree measures the num-
ber of different people to whom an individual has replied-to,
and is an indication of the level of engagement of an individ-
ual in the mailing list and the breadth of his/her interests.
This distribution also shows a small-world character.

Next, we examine (Figure 2) the relationship between the
number of messages sent by an individual, and the number
of distinct respondents who replied to that individual. For
this graph, we only considered individuals who had actu-
ally received at least one response to their message. It can
be seen that there is a strong relationship; in fact, we note
a very high Spearman’s rank correlation, around 0.97. It
should be noted that these are not the same phenomena;
the number messages one sends need not necessarily corre-
late with the number of different people that consider that
message worth responding to. This may be due to commu-
nity norms, i.e., people only post relevant messages, and
the community by and large responds to messages. It may
also be due to a survival effect, whereby only people who
receive replies from several people keep sending messages.
We are currently using time-series regression analysis to ex-
amine the latter theory, that only people who receive replies
to their messages continue to be active on the mailing list.

Finally we present (in Figure 3) a pruned email social net-
work; the full network is too large to render in a useful fash-
ion on non-interactive media. Each directional link in Fig-
ure 3 indicates a message count of at least 150. For example,
the arrow from Alexei Kosut to Ben Laurie indicates that
the latter replied to at least 150 messages from the former;

Figure 2: How out-degree (number of distinct re-
spondents) grows with number of messages sent by
ego, n=1063

this indicates that Laurie found a lot of Kosut’s messages of
interest. The reverse arrow indicates that this relationship
was mutual. Unidirectional arrows, for example from Slemko
to the Rodent, merely indicate that the former replied to less
than 150 messages from the latter. Self links indicate that
individuals sometimes replied to their own messages, some-
times after comments from others, sometimes to clarify their
original message.

The high connectedness of certain individuals (Gaudet,
Laurie, Bloom, Jagielski, Rowe) can be seen even in this
pruned network; these individuals are in fact the most pro-
ductive developers. Preliminary statistical data further sup-
porting this is presented in the next section.

We conclude this section with some observations:

140

Figure 3: Pruned Social Network of Apache Email-
ers (Each link indicates at least 150 messages sent,
or replied-to).

• The number of messages sent by individuals, and the
number of messages sent in reply to individuals, both
follow a Pareto distribution;

• The social network of individuals on the email network,
where an individual a has a link to an individual b if b
replied to a message from a, shows a long-tailed degree
distribution on both in- and out-degrees, characteristic
of small-world networks.

• There is a strong relationship between the number of
messages sent by an individual, and the number of dis-
tinct individuals who respond to that individual (also
the out-degree in the social network). We are studying
this phenomenon using time-series analysis.

Next we turn to examine the relationship between email
activity and development activity.

5. C&C ACTIVITY AND DEVELOPMENT
ACTIVITY

In this section we discuss this question: How does email
activity relate to software development activity. In order
to study this question, we use data gathered from the cvs
archives on how many changes (distinct commits) were made

by each individual. In fact only 73 individuals have actually
made commits to the versioned repository during the period
beginning with 1999, (before which this repository was not
used) until the present. There are two types of files, source
and documents. We counted each separately, in order to
study the relationship of source code and document activity
with email activity.

5.1 Activity Correlation
There are large number of correspondents on the mail-

ing list who do not have commit privileges, never make any
changes to the project files. These individuals tend to be
less active on the email list. In order to study the relation-
ship between the effort spend on C&C activities, and de-
velopment activities, we excluded individuals who have not
made any changes to source code or documents from this
study. By focusing on just those individuals who have made
changes, we hope to get a clearer picture of the relationship
of email activity with development activity.

Based on the data for just the 73 committers, we observe
a Spearman’s rank correlation of about 0.80 between the
number of messages sent by an individual, and number of
source changes they make. This clearly indicates that the
more software development work an individual does, the
more C&C activity the individual must undertake. There
is a somewhat lower correlation, around 0.57, with number
of document changes. We hypothesize that this is because
source code activities require much more co-ordination effort
than documentation effort, but further study, using time-
series data is needed to determine this.

The total number of messages is only one aspect of a
community’s structure; the volume of messages sent by an
individual (even if they receive replies) doesn’t necessarily
indicate the individual’s position in the social network. So-
ciologists have invented several measures of an individual’s
position in a network, when viewed globally. We also study
the relationship of some of these measures to the activity
level of an individual.

5.2 Social Network Measures
We focus on 3 measures, in-degree out-degree and between-

ness, which are indicators of the importance of an individual
in a network. Out-degree and in-degree were discussed ear-
lier; for this part, we normalize out-degree and in-degree by
the total size of the network. For a node v in a graph g,
betweenness BW is defined as follows:

BW (v) =
X

i,j,i6=j,i6=v,j 6=v

givj
gij

where givj is the number of shortest paths (geodesics)3 in
g, between i and j, that go through v; and gij is the total
number of shortest paths from i to j.

High betweenness indicates that the person is a kind of
broker, or gatekeeper in the social network; s/he plays a role
in a great many interactions. Such people can have high
status, and can also be bottlenecks. Actors who are high
in betweenness centrality have the potential to control or
disrupt communication or trust relationships between var-
ious end points. So we ask the question, Are developers
more likely to play the role of gatekeepers or brokers in the

3Note that there may be more than one shortest path be-
tween two nodes if multiple paths are of the same length.

141

changes srcChanges docChanges outdegree indegree betweenness mean min max

changes 1 0.789 0.932 0.520 0.474 0.553 912 0 16289

srcChanges 0.789 1 0.514 0.712 0.679 0.757 420 0 5741

docChanges 0.932 0.514 1 0.308 0.263 0.327 492 0 13420

outdegree 0.520 0.712 0.308 1 0.971 0.955 0.0080 0 0.0396

indegree 0.474 0.679 0.263 0.971 1 0.917 0.0067 0 0.0260

betweenness 0.553 0.757 0.327 0.955 0.917 1 0.0011 0 0.0965

Figure 4: Cross-correlation table, (using Spearman’s rank correlation) showing relationship between the total
number of changes, the changes to source, changes to documents, relative in-degree, relative out-degree,
betweenness. Average, min and max are also shown. n=73

complete email social network? To answer this question, we
computed the betweenness scores of developers (n = 73)
and non-developers (n=1123) in the full email social net-
work. The mean betweenness of developers is 0.0114, and
the mean betweenness of non-developer is 0.000140. A sim-
ple T-test indicates a t-value of 5.07, which is highly signif-
icant. The other measures, out-degree and in-degree were
also calculated. They also indicate that developers have a
significantly higher status, as indicated in the table below.

Developer Non- T-value Significance

-Developer

Betweenness 0.0114 0.000140 5.07 p < 0.001
Out-degree 0.00666 0.000451 8.14 p < 0.001
In-degree 0.00794 0.000367 7.54 p < 0.001

So we can conclude that developers are higher in status
than non-developers. Next, we consider just the population
of developers, and study the indicators of status within this
population.

5.3 Relative Status of Developers
Considering just the population of developers who have

made changes to the source and documents (n = 73) we
turn the reader’s attention to Figure 4, which shows a table
with the relevant descriptive statistics and correlation val-
ues. The top 3 rows (left 3 columns) are measures of activity:
total changes, source code changes, and document changes.
The bottom 3 rows (columns 4,5, and 6) are indicators of
social status.

Considering just the 3 change variables, it can be seen that
source changes are not as highly correlated with document
changes, indicating that not all developers are engaged in
both to the same degree. Thus, developer nd made 13420
document changes, and 2869 source changes, while developer
dougm made 1322 source changes and 74 document changes.
There are several others who were skewed in this way.

Turning now to the relative indicators of status, we can
see that source changes shows the strongest rank correlation
with the social network status indicators of normalized out-
and in-degrees, and betweenness. In fact the correlation for
betweenness is quite high, at 0.757. It should be noted that
these are non-parametric correlation measures, and are thus
more robustly indicative of a relationship. This indicates
that even within the higher-status group of developers, the
most active developers play the strongest role of communi-
cators, brokers, and gatekeepers. It’s also noteworthy that
the correlation with document changes is much weaker, in-
dicating that higher activity in source code is a stronger

determinant of social status than activity in documents.
A later study of the developer mailing list and source code

repository data for the Postgres4 project showed that the
social status measures had similar levels of correlation with
source code changes [3]. The Postgres data, however, showed
much higher correlations between document changes and so-
cial network measures than the Apache data. We plan to
examine this statistic in future work.

We end this section with several preliminary conclusions:

• The level of activity on the mailing list is strongly cor-
related with source code change activity, and to a lesser
extent with document change activity.

• Social network measures such as in-degree, out-degree
(normalized by the number of developers) and be-
tweenness indicate that developers who actually com-
mit changes, play much more significant roles in the
email community than non-developers.

• Even within the select group of developers, there is
a strong correlation between the abovementioned mea-
sures of social network importance and level of source
code change activity.

6. RELATED WORK
There has been considerable study of social behavior in

on-line communities; we only survey work here in the OSS
development context.

Social networks among developers have been studied from
other perspectives. Xu et al [19] consider two developers so-
cially related if they participate in the same project. Our
view is to consider developers related if there is evidence
of email communication; this is arguably a more direct evi-
dence of a social link. Wagstrom, Herbsleb and Carley [18]
gathered empirical social network data from several sources,
including blogs, email lists and networking web sites, and
built models of their social behavior on the network; these
were then used to construct a simulation model of how users
joined and left projects. Our goal is empirical rather than
to run a simulation; we explicitly wish to study the rela-
tionship of email behavior and commit behavior in a single
project.

Crowston & Howison [7] use co-occurrence of developrs on
bug reports as indicators of a social link. They empirically
demonstrate that the social networks of smaller projects are
more central than those of larger projects, presumably larger

4http://www.postgresql.org

142

projects decentralize, to simplify C&C activities. This paper
is more centered on the study of individual developers and
how their email activity and social status changes with their
commit activity.

Commit behaviour in versioned repositories has been used
as indicator of social linkage. Lopez-Fernandez et al [12]
consider two developers to be linked if they commited to
the same module, and two modules to be linked if they were
committed to by the same developer. The resulting social
networks are similar in structure to ours. The work of De
Souza et al [6] is similar, except that they study files in-
stead of modules. This work also visualizes the changes in
social position of developers within the social network over
time, and that of modules in the module dependency net-
work. Developers become more “central” in the social net-
work over time. Turning to modules, they found that code
ownership in some parts of the system was more stable than
others. Finally, we note that these papers study collabora-
tion networks, whereas our focus is more on communication
networks; the relationship between the two is a subject of
our current research.

7. CONCLUSION
We describe here our work on mining the email social

network on the Apache HTTP server project. We had to face
head-on the challenge of resolving multiple email aliases that
were used by the same individuals; failing to do this would
have seriously affected our ability to study the social network
of developers. We have hand-inspected our alias resolution
for errors; however, we acknowledge that our alias-resolution
step is in need of further validation. Our goal is to do this by
mailing a sample of participants get an idea of the accuracy
of our alias resolution. Furthermore, a small number (less
than 1.3%) of email headers could not be parsed; we are
also working on resolving this. However, we believe, that
a) there are likely to be only a few errors in the aliasing
and b) that the preliminary results reported here are quite
robust and unlikely to change significantly even as our data
extraction improves.

Our analysis indicates that the email social network is a
typical electronic community; a few members account for the
bulk of the messages sent, and the bulk of the replies. The
in-degree and the out-degree distribution of the social net-
work exhibit typical long-tailed, small-world characteristics.
We also note that there is a strong relationship between the
number of messages sent, and the number of different people
who respond to them; this merits further study.

Our preliminary data also indicates a strong relationship
between the level of email activity and the level of activ-
ity in the source code, and a less strong relationship with
document change activity. Our data also gives strong indi-
cations that developers play a much more significant social
role among all the participants in the mailing list. Further-
more, the data also supports preliminary finding that the
level of activity in the source code is a strong indicator of
the social status of a developer (among other developers);
the document activity is not as strong an indicator.

Our near-term goal is to study these effects in a time-series
basis, to investigate if there are causal relationships between
development activity and social status. We are also very
interested in studying the relationship between the archi-
tecture of the system, and social network of the developers
(which is also known as Conway’s Law).

8. REFERENCES
[1] R. Agrawal, S. Rajagopalan, R. Srikant, and Y. Xu.

Mining newsgroups using networks arising from social
behavior. In WWW ’03: Proceedings of the 12th
international conference on World Wide Web, 2003.

[2] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286:509–512, 1999.

[3] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and
M. Gertz. Mining email social networks in postgres. In
MSR ’06: Proceedings of the International Workshop on
Mining Software Repositories, 2006.

[4] F. Brooks. The Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary Edition. Addison-Wesley,
1995.

[5] S. Chapman. Sam’s string metrics page.
www.dcs.shef.ac.uk/ sam/stringmetrics.html.

[6] J. F. P. D. Cleidson de Souza. Seeking the source: Software
source code as a social and technical artifact, 2005.
http://opensource.mit.edu/papers/desouza.pdf.

[7] K. Crowston and J. Howison. The social structure of free
and open source software development.
opensource.mit.edu/papers/crowstonhowison.pdf,
November 2004.

[8] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg. Who
is an open source software developer? Communications of
the ACM, 45(2):67–72, February 2002.

[9] L. C. Freeman. Centrality in social networks I. Conceptual
clarification. Social Networks, 1:215–239, 1979.

[10] M. Granovetter. The strength of weak ties. American
Journal of Sociology, 78:1360–1380, 1973.

[11] K. Kuwabara. Linux: A bazaar at the edge of chaos. First
Monday, 5(3), March 2000.

[12] L. Lopez, J. M. Gonzalez-Barahona, and G. Robles.
Applying social network analysis to the information in cvs
repositories. In Proceedings of the International Workshop
on Mining Software Repositories, 2004.

[13] G. Navarro. A guided tour to approximate string matching.
ACM Comput. Surveys, 33(1):31–88, 2001.

[14] M. E. J. Newman. The structure and function of complex
networks. SIAM Review, 45:167–256, 2003.

[15] J. Nieminen. On centrality in a graph. Scandinavian
Journal of Psychology, 15:322–336, 1974.

[16] E. S. Raymond. The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental Revolutionary.
O’Reilly and Associates, Sebastopol, California, 1999.

[17] E. Ukkonen. Algorithms for approximate string matching.
Information & Control, 64(1-3), 1985.

[18] P. A. Wagstrom, J. D. Herbsleb, and K. Carley. A social
network approach to free/open source software simulation.
In Proceedings First International Conference on Open
Source Systems, pages 16–23, 2005.

[19] J. Xu, Y. Gao, S. Christley, and G. Madey. A topological
analysis of the open source software development
community. In HICSS ’05: Proceedings of the Proceedings
of the 38th Annual Hawaii International Conference on
System Sciences (HICSS’05) - Track 7, 2005.

143

Geographic Location of Developers at SourceForge∗

Gregorio Robles
grex@gsyc.escet.urjc.es

Jesus M. Gonzalez-Barahona
jgb@gsyc.escet.urjc.es

Grupo de Sistemas y Comunicaciones
Universidad Rey Juan Carlos

Mostoles, Spain

ABSTRACT
The development of libre (free/open source) software is usu-
ally performed by geographically distributed teams. Partic-
ipation in most cases is voluntary, sometimes sporadic, and
often not framed by a pre-defined management structure.
This means that anybody can contribute, and in principle
no national origin has advantages over others, except for
the differences in availability and quality of Internet con-
nections and language. However, differences in participa-
tion across regions do exist, although there are little studies
about them. In this paper we present some data which can
be the basis for some of those studies. We have taken the
database of users registered at SourceForge, the largest libre
software development web-based platform, and have inferred
their geographical locations. For this, we have applied sev-
eral techniques and heuristics on the available data (mainly
e-mail addresses and time zones), which are presented and
discussed in detail. The results show a snapshot of the re-
gional distribution of SourceForge users, which may be a
good proxy of the actual distribution of libre software de-
velopers. In addition, the methodology may be of interest
for similar studies in other domains, when the available data
is similar (as is the case of mailing lists related to software
projects).

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous

General Terms
Human Factors

∗This work has been funded in part by the Euro-
pean Commission, under the CALIBRE CA, IST pro-
gram, contract number 004337 and under the FLOSS-
World SA, IST program, contract number 015722.
This work is based on the SourceForge database pro-
vided by University of Notre Dame, see details at
http://www.nd.edu/ oss/Data/data.html.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

Keywords
Geographical location, mining software repositories, libre
software, free software, open source software

1. INTRODUCTION
One of the most well known characteristics of libre (free,

open source) software1 is the worldwide distributed pool of
developers that collaborate in tens of thousands of projects,
using Internet-based tools for coordination. These projects
are usually open to participation by anyone, from any corner
of the globe, provided Internet access is granted; those with
enough knowledge and skills can, in principle, join them.
This openness, and the underlying informality, has resulted
in an environment where participation is difficult to control,
or even understand. One of the most significative examples
of open issues in this respect is the geographical distribution
of the aforementioned pool of developers. The answer to the
question “where do developers live?” is not only interesting
for academic reasons; it is also important from both strategic
and economic points of view.

In this paper, we present a first approach to deal with
this question by analyzing data about a huge sample of de-
velopers. We describe how we have mined the database of
the largest libre software development supporting platform
(SourceForge) looking for indicators to estimate the geo-
graphic location of the developers registered in it. Since the
number of users of the SourceForge platform is well over
one million, we can assume it is a reasonably good and rep-
resentative proxy of the whole population of libre software
developers (although for sure it presents some bias, as will
be discussed later, for instance in terms of language knowl-
edge).

The main goals of this paper are two: to show a method-
ology to estimate country of residence (as a simple quantifier
of geographic location) using the indicators available in the
SourceForge database, and to obtain a first estimation of
the location of libre software developers.

With respect to the first goal, it is noteworthy to mention
that SourceForge does not store specific information about
the geographical location of developers, which therefore has
to be inferred from other indicators, such as the domains in
the e-mail address, or the time zone information developers
introduce when registering at SourceForge. We believe that

1Through this paper we will use the term “libre software”
to refer to any code that conforms either to the definition of
“free software” (according to the Free Software Foundation)
or “open source software” (according to the Open Source
Initiative).

144

the methodology we have designed for this inference can
be extended to deal with data from other sources, such as
mailing lists.

With respect to the second goal, our estimation will be
only as precise as SourceForge population is representative
of the global libre software development population. We
offer no proof of this representativeness, and therefore the
results presented have to be considered with care. However,
despite any bias the SourceForge population can have, it
is the most global, diverse and (by far) largest community
of libre software developers, which means that, even if the
results were not extensible to the whole development com-
munity, they are interesting by themselves.

The structure of this paper is as follows. In the next sec-
tion we present some other research efforts on the geograph-
ical distribution of libre software developers. Afterwards,
while the third section contains a description of the data
source we have used for the study, the forth one presents
the methodology that we have designed to infer the nation-
alities. Next, the results of the application of the method-
ology to the SourceForge population is shown and briefly
commented. Finally, conclusions and some ideas for further
research are be offered in the last section.

2. RELATED RESEARCH
Among the several approaches to study the geographical

location of libre software developers, we can identify two
categories, according to the data acquisition process: those
which collect specific data provided by certain libre soft-
ware projects (such as the CREDITS files found with the
source code, or information available on the web pages of
the project), and those which obtain the data by surveying
developers.

To our knowledge, the first study in this field [3] stud-
ied the meta-data that can be found in the Linux Software
Map entries2. Among other fields, they contain the name
and e-mail address of the main author. By studying the
top-level domain3 of the e-mail address, the country of res-
idence could be partly inferred, although the presence of
generic top-level domains4 made it impossible to determine
the location of many developers, especially those based in
the United States. Hence, there is a bias, recognized by the
authors, which recommend further research on this matter.

The Debian project was studied in 2001 [12], based on the
country information that the Debian developers introduce
in the Debian Developer Database. Since it also contains
information about the admission date for each developer, an
evolutionary analysis was performed, showing how Debian
started primarily as an US-based project, turning later to an
European majority. The presence of members of developing
countries was minimal.

The CREDITS file of the Linux kernel, and the con-
tact information of the GNOME project was also studied
in 2001 [6]. Its most remarkable result is that the shift to-

2The Linux Software Map (LSM) is a database of software
written or ported to Linux, http://lsm.execpc.com/lsm/.
3A top-level domain (TLD) is the last part of an Internet
domain name; that is, the letters which follow the final ’dot’
of any URL.
4A generic top-level domain (gTLD) is in theory used for
a particular class of organizations (com for commercial or-
ganizations, edu for educational institutions, etc.). Those
domains do not include geographic information.

wards a more European-based development in both projects
can be explained by economic theory, with the number (and
distribution) of developers depending on the cost of opportu-
nity. Some years later, a new study of the Linux CREDITS
file [13] provided a more in-depth study of the geographical
distribution of the kernel developers.

One of the first studies based on surveys was WIDI [12]
(2001) which featured over 5,500 respondents. Results
showed a majority of EU-based developers, although the
self-selected nature of the participants introduced a bias
which has to be taken into account. A later survey,
FLOSS [4], was answered by about 2,500 self-selected de-
velopers over the Internet. Although it did not include the
study of the geographical distribution, a surprisingly large
quantity of European developers (in comparison with their
American and Asian counterparts) participated. This was
one of the reasons to perform similar survey with other fla-
vors, such as FLOSS-US [2] (interestingly enough, Euro-
peans where also predominant) and other Asian surveys.

Regarding SourceForge, it has been an inspiration for
many research papers on libre software and software reposi-
tories in general. The most relevant to our work is maybe a
statistical analysis of the projects hosted in SourceForge [5],
which shows that it hosts many small to medium-sized
projects, while larger ones (such as Linux, GNOME, KDE or
Apache) tend to use their own development infrastructure.
For our purposes, this is by no means a disadvantage, since
many developers who contribute to large projects are also
registered at SourceForge. We can, hence, consider Source-
Forge users population as the largest collection of libre soft-
ware developers in the world.

3. DATA SOURCES
The data source analyzed in this work is the SourceForge

database, as provided to research teams by the University of
Notre Dame. The database is provided as a monthly dump
under an special agreement5. Therefore, the data set we use
is not public, but is available to the research community,
which means that the results based on it are reproducible
by other groups.

For our research, we use the private e-mail address and
the time zone associated to every SourceForge user in the
database. SourceForge uses the private e-mail address for
verification purposes. It is private in the sense that it is not
published in the site. The time zone can be specified by
registered users, in which case it is used to localize the dis-
play of time when the user is logged in. Usually time zones
contain the region and a city name (eg. Europe/Madrid),
although there are other formats, such as abbreviations (eg.
CET is Central European Time)6. The default choice, for
users which have not selected a time zone, is GMT.

The SourceForge data is provided through a web-based
tool. Queries on it are returned in a text file, with the
database fields separated by semicolons. We have queried for
the private e-mail and time zone fields, parsed the output,
transformed it into and SQL dump, and fed a database with
the data. After this process, we hold data for more than
1,180,000 registered users at SourceForge in November 2005.

5More information about this agreement can be obtained
from http://www.nd.edu/ oss/Data/data.html
6For a complete list of time zones, visit:
http://wwp.greenwichmeantime.com/info/timezone.htm.

145

This is by far the largest data set ever used to estimate the
geographical distribution of libre software developers.

Another data set based on SourceForge, FLOSSMole [1],
provides public information about its registered users, but
only includes the information that can be retrieved from the
public interface of the site. Therefore, it does not include
the private e-mail address, which is basic for this study.

4. METHODOLOGY
The final goal of the methodology described in this section

is to estimate, as accurately as possible, the geographical
distribution of the users in the database, using the domain
in their e-mail address and the time zone as the base for the
analysis.

The inference is straightforward when the TLD (top-level
domain) of the e-mail address corresponds with a country
code (country-coded top-level domains, or ccTLD; table 1
displays a list with some ccTLDs and the country they are
assigned to). This is for instance the case of one of the au-
thors of this paper, who is registered at SourceForge with fol-
lowing e-mail address: gsyc.escet.urjc.es (‘.es’ is the ccTLD
corresponding to Spain).

ccTLD Country
de Germany
es Spain
fr France
mx Mexico
uk United Kingdom
us United States

Table 1: List of some country coded top-level do-
mains (ccTLDs).

The same can be said for many time zone codes. Almost
all countries have a time zone designated by region, or even
an abbreviated one. For instance, the Europe/Madrid time-
zone is a good indicator about the developer being located
in Spain. As in the case with ccTLDs, it is trivial to assign
a time zone to a country (and therefore to a ccTLD). As
a matter of example, table 2 displays some time zones and
their corresponding ccTLDs.

Time zone ccTLD
Europe/Berlin de
US/Eastern us
America/New York us
EST us
Europe/Madrid es
Europe/Moscow ru
America/Sao Paulo br

Table 2: List of some time zones and country codes
top-level domains (ccTLDs).

However, in many cases the identification of the country
of origin is not that simple. The reason for this is basically
because we have to face incomplete information.

4.1 Incomplete information
Unfortunately, from our total population of over 1,180,000

registered developers, more than 750,000 do not use a
ccTLDs (67%) in their e-mail address. The use of generic

top-level domains (gTLD), such as .com, .net, .org, .biz,
.info, is widespread, and renders the identification of na-
tional origin more difficult.

With respect to time zones, around 425,000 have the de-
fault, GMT (38%). This is problematic, since in this spe-
cific case we cannot assume that the time zone was selected:
maybe the user lives in any other time zone, but never set it,
or maybe she lives in a GMT time zone (and therefore have
correctly selected it). However, they should still be assigned
to some national origin (since there are several countries
with GMT time).

Fortunately, we can build upon the fact that we have
both entries for all registered users, and one of them can
be enough to have evidence about the country. This means
that the ‘problematic’ records are only those that have a
gTLD in the e-mail address and GMT time zone. There are
about 280,000 users (25% of the total population) in this
situation. Our aim in this section is to find ways to lower
the percentage of users to which we cannot assign a country.
Several methods will be used in this sense. We will start by
inferring information from the second level gTLDs (SLDs).

Domain Number
hotmail.com 63784
yahoo.com 40180
gmail.com 14191
aol.com 6275
gmx.net 4128
msn.com 3688
163.com 2013
ntlworld.com 1998
rr.com 1981
rediffmail.com 1881

Table 3: Top 10 domains in number of SourceForge
users that have set GMT as their time zone (total:
66054 distinct domains).

Table 3 gives the top ten SLDs in number of developers
with GMT as time zone. For the SLDs with many registered
users, we can look for those who specified a time zone differ-
ent from GMT, and, in a first approach, assume that users
who specified GMT should have the same proportion of non-
GMT time zones. In other words, we propose an algorithm
to proportionally distribute those users with a GMT time
zone among all other time zones found for a SLD (see fig-
ure 1 for a graphical display of this idea). So, the algorithm
takes those SLDs with a gTLD and finds out the time zone
that the corresponding users selected (from which we can
infer the country). Then it assigns proportionally entries
with GMT time zone to the given countries.

As a case of example, consider epo.org, a domain with 22
registered users. From these, 10 had set GMT as time zone,
8 had the Dutch Europe/Amsterdam, 2 had the German
Europe/Berlin, 1 the Austrian Europe/Vienna and a last
one the French Europe/Paris time zone.

The algorithm in this first approach would assume that
the GMT entries have to be assigned proportionally to the
other ones. This means that there are 10 entries to be split
among the other countries. To make it proportionally, all
non-GMT time zones are added up. The final estimation for
each country is given by the sum of the original number of
developers plus the proportional part of the GMT. Values

146

Figure 1: Redistribution algorithm graphically.

are not rounded at this point as this algorithm is going to
be applied on all other gTLDs with GMT entries, so for the
sake of accuracy rounding should occur at the end of the
process. The following excerpt should clarify the algorithm:

GMT: 10 <---- to be distributed

nl: 8 -> 8 + 8/12 * 10 = 14.67 <- nl

de: 2 -> 2 + 2/12 * 10 = 3.67 <- de

at: 1 -> 1 + 1/12 * 10 = 1.83 <- at

fr: 1 -> 1 + 1/12 * 10 = 1.83 <- fr

Total: 22

However, this algorithm presents problems for those coun-
tries which are actually in GMT, by underestimating their
number of developers. Next subsection explains why, and
shows a second approach which solves this problem. For the
final estimation, this second approach will be used.

4.2 Countries in the GMT zone
The previous algorithm has a problem for those countries

located in the the GMT zone, which in our data set are
mainly the United Kingdom (uk), Ireland (ie) and Portugal
(pt), since they are underrepresented. This is because we
have assumed that those users who selected the GMT time
zone did it ’by error’ (never changing the default value).
This is not always true, so we should find ways, to compen-
sate this effect.

The basic idea for the subsequent reasoning is the assump-
tion that those who live in the GMT time zone behave the
same when filling out their data than the rest of the popu-
lation. In other words, the ’error’ rate of leaving the default
time zone would be similar for all entries. Table 4 shows,
for many European countries, the number of users with their
‘own time zone’ (time zone that corresponds to their respec-
tive ccTLD), and those that have selected GMT.

For instance, from those who have an Austrian (at) TLD,
3229 have chosen Europe/Vienna as their time zone, while
2840 left the default GMT. The last column shows the ratio
between the own time zone and GMT. It is clear that these
ratios are completely different for those countries that lay
within the GMT time zone (with values below 0.3), when
compared to the rest of European countries (with values in
general between 1.10 and 1.90).

Country own TZ GMT Ratio
at 3229 2840 1.14
be 4256 2701 1.58
ch 3813 2864 1.33
cz 2999 1708 1.76
de 36471 30857 1.18
dk 3779 2362 1.60
es 3930 2699 1.46
fi 3087 1187 2.60
fr 12150 8847 1.37
gr 1339 687 1.95
hu 2976 1957 1.52
it 12556 8917 1.41
lu 162 117 1.38
nl 9483 6027 1.57
no 2546 1620 1.57
pl 7607 4403 1.73
se 5817 3061 1.90
Total 116200 82854 1.40

ie 89 996 0.09
pt 632 2514 0.25
uk 2854 22108 0.13

Table 4: Time zone choice for some European coun-
tries.

If we take all European countries, the weighted mean of
the ratio between the own time zone and GMT is 1.40. It is
reasonable to assume that United Kingdom (uk), Ireland (ie)
and Portugal (pt) should have a similar mean for that ratio.
This assumption makes it possible to find a factor that can
be multiplied to the entries corresponding to these countries
in the GMT-assignation algorithm explained in the previous
subsection. The equation for calculating this factor is:

Factor =
GMT + ownT imezone

1.71 ∗ ownT imezone
(1)

Figure 2: GMT factor calculation graphically.

How is that equation obtained? As shown in figure 2, Fac-
tor should ensure that the ratio of GMT to own time zone,
for the GMT countries, is similar to that of non-GMT Eu-
ropean countries. Therefore, we can define some conditions
that must be met. As shown by equation 2, the number of
entries before (given by the C, for current, subindex) and
after (given by the F, for final, subindex), considering the
factor, should remain constant.

147

GMTF + ownT imezoneF = GMTC + ownT imezoneC (2)

A second condition is that the ratio between the final
GMT and the final own time zone entries has to be 1.4,
since this is the weighted mean of the ratio between the
own time zone and GMT for the European countries (see
equation 3):

1.40 ∗ GMTF = ownT imezoneF (3)

A third condition introduces Factor (see equation 4), stat-
ing that the number of entries given for the final own time
zone has to be the same found for the current one multiplied
by the factor (i.e. the number of users remains constant).

ownT imezoneF = Factor ∗ ownT imezoneC (4)

Given these three conditions, GMTF , ownT imezoneF

and Factor are the unknown parameters. If we solve the
systems of equations, we get equation 1, which shows how
the factor is calculated.

The factors obtained for the GMT countries can be found
in table 5. These values mean, for instance, that every uk
entry for a domain should be weighted as 5.1 entries from
other non-GMT countries when performing the redistribu-
tion algorithm presented above (and depicted in figure 1).

Country Factor
uk 5.1
ie 7.1
pt 2.9

Table 5: Multiplying factor for GMT countries.

Finally, there is a small set of users (around 3% of the
total sample) that have GMT as time zone, hold an e-mail
address with a gTLD and do not share SLD with any other
SourceForge user. For this set of developers we obtain the
IP of the SLD by querying a DNS server. Using the geoIP
library7 we query for the geographical location of the host.
The geoIP library contains a database that maps IPs to
countries. This method is used, for instance, to assign a
developer with the hautpraxis.com SLD to Germany (de).

4.3 Inferring geographical location
We have described several ways of obtaining the country

of residence of our developer base. It can be done by look-
ing at the TLD of the e-mail address, by transforming the
time zone, by assigning the time zone proportionally from
those given by the ones who share SLD, and if none of these
are possible, by looking the geographical information of the
SLD. All this means that we may have various information
sources for a given developer and that information may be
fragmented.

Figure 3 displays the four sets that we can find in our
sample: ccTLD-other is the set of developers having an e-
mail address with a ccTLD and a time zone different from
GMT. ccTLD-other includes those with a ccTLD e-mail ad-
dress and GMT as time zone (probably some of them will
actually live in a GMT time zone, but many others just left

7http://sourceforge.net/projects/geoip/

the default). Those developers with a gTLD address and a
non-GMT time zone are grouped in gTLD-other. Finally,
gTLD-GMT contains those with a gTLD and GMT.

As we have seen in this paper, depending on the zone
we can obtain the country of the developers by different
means; sometimes by more than one for each set. For de-
velopers in ccTLD-other we could assign a country based on
the ccTLD (method ccTLD) or from the time zone (method
TZ). In the case of ccTLD-GMT, the assignation could be by
studying the ccTLD (method ccTLD) or by redistributing
the GMT time zone among the rest of time zones (method
GMT-redist). The only possibility for those in the C set is
to obtain the country from the time zone, while for D we can
get it by redistributing the time zone among the SLDs. For
those in D for which this is not possible (the ones who have
set GMT and do not share a SLD with other SourceForge
user that makes redistribution possible), the IP address of
the SLD can be taken into account.

Figure 3: Set diagram with the different kinds of
data.

Therefore, for ccTLD-other and ccTLD-GMT we have
several choices. The yet unresolved question is to know
which of them is better, since we do not know whether in-
formation provided by ccTLDs is more or less accurate than
that obtained from the time zone.

5. RESULTS AND OBSERVATIONS
The results shown below have been obtained by assigning

the ccTLD (so, we chose method ccTLD). We have also
calculated results using method TZ (time zone instead of
ccTLD) and GMT-redist (time zone distribution instead of
ccTLD) and they are not significantly different.

Table 6 lists the top 50 countries by number of develop-
ers registered at SourceForge. These countries amount for
96.5% of the total identified registered users, while the top
20 countries include up to 83.9% of the total SourceForge
population.

Although it is outside the scope of this paper, it would be
interesting to find correlations between these data and some
other per-country parameters, such as GDP or percentage
of homes with Internet access. Just as a quick note, it is
interesting to notice that this list is quite similar to the top
countries by GDP, with some notable exceptions, of which
the place of Japan (second by GDP) is probably the most
surprising. Canada and Australia, on the other hand, are
well above their ranking by GDP.

148

Rank Country Developers
1. United States 425620
2. Germany 95800
3. United Kingdom 60768
4. Canada 49109
5. France 44587
6. China 36517
7. Australia 31812
8. Italy 30763
9. Netherlands 29335
10. Sweden 23867
11. India 22113
12. Brazil 21291
13. Russian Federation 19012
14. Spain 18905
15. Japan 15081
16. Poland 14697
17. Belgium 13983
18. Switzerland 12133
19. Austria 10024
20. Denmark 9952
21. Singapore 9155
22. Finland 9027
23. Norway 8498
24. Mexico 8185
25. South Korea 7727
26. Israel 6948
27. Argentina 6695
28. Hungary 6573
29. Romania 6345
30. Taiwan 6336
31. Turkey 6099
32. Czech Republic 6039
33. European Union 5801
34. South Africa 5706
35. Portugal 4991
36. New Zealand 4518
37. Greece 4058
38. Indonesia 3893
39. Thailand 3746
40. Bulgaria 3606
41. Ukraine 3383
42. Malaysia 3189
43. Western Samoa 2856
44. Ireland 2686
45. Chile 2548
46. Slovak Republic 2141
47. Maldives 2067
48. Colombia 2052
49. Madagascar 1838
50. Estonia 1758

Table 6: Results for the top 50 countries.

Also noteworthy is that we can find European Union in
place 33 in the country list. This is because of the existence
of the .eu domain and the CET time zone that could be
assigned to a wide range of European countries (mostly part
of the European Union). A way to address this problem
could be using a redistribution algorithm for those entries,
distributing proportionally among countries.

Surprising positions are achieved by Western Samoa (43),

Maldives (47) and Madagascar (49). The reason for this
is that some ccTLDs can be acquired without restrictions
and have become de facto gTLDs. For instance, Western
Samoa’s top-level domain is ws, which has been sold as a
shortcut for “website”. Again, redistributing these entries in
any of the ways already presented would make results more
accurate. A good way of identifying these inflated domains
would by correlating our results with total population, thus
obtaining a per capita distribution. Per capita values that
are too high will be a clear indicative.

Region Developers
Africa 12560
Asia 127275
EU 401845
Europe 466792
North America 485679
Oceania 46422
South America 36330

Table 7: Results by regions.

Table 7 groups countries by regions. These figures are con-
sistent with previous studies, maybe showing higher num-
bers for North America. In any case, it is clear that most of
the developers come from Europe and North America (on an
almost 50-50 ratio), followed by Asia with less than 10%. On
the other hand, as the population is larger in Europe than
in North America, this means that the penetration of the
libre software development measured in SourceForge regis-
tered developers per capita is higher in North America than
in Europe.

All of these results are of course not exact. We have
worked with sources with rather different error margins, and
we have used heuristics that are sound, but have for sure a
certain error rate. To assess on the validity of the method-
ology for estimating the national origin, we should check
(probably by contacting developers themselves) for a large
fraction of SourceForge users. The results should then be
compared with those of our study. However, the validations
we have performed seem to indicate that the results are sta-
tistically sound, and that the figures shown are at least good
estimators of the reality.

6. CONCLUSIONS AND FURTHER RE-
SEARCH

In this paper we have described the process of extracting
data about national origin from the SourceForge database,
using mainly two parameters: e-mail addresses and time
zones. We have also presented and discussed the results of
applying this process to well over one million of registered
users.

We have described the methodology with as much detail
as possible, so that it can be completely understood and
applied by third parties to this and other data sources. For
instance, many methods described here can be used in other
contexts, such as the study of contributions to the mailing
lists archives of a project (provided there is access to the
archives of those mailing lists).

Our methodology is not focused on identifying the geo-
graphical location of single developers (although in many
cases that is done), but on finding the aggregate numbers of
developers of a certain national origin. Therefore, we use in

149

many cases statistical relationships to infer the proportion of
nationals of a certain country in a population of users with
some characteristics. This is certainly a limitation of the
proposed approach, specially if we were interested in (in-
dividual) developer identification methods as proposed in
other works [10].

A future line of research could be to relate our findings
with the activity of developers in the projects they are in-
volved. This could be done by tracking developers in control
versioning systems, mailing lists, forums, etc., and studying
their activity by national origin. This could be an impor-
tant issue, since previous research has shown that activity
in libre software tends to be highly skewed towards a mi-
nority group responsible for the vast majority of the work
performed. The authors of this work have started to ana-
lyze the CVS versioning system logs of all the SourceForge
projects with the CVSAnalY tool [11], and the FLOSSMole
project [1] has also information related to projects in the
site. Both data sets could be used for this matter.

An interesting issue is how representative this study is of
the whole population of libre software developers. Source-
Forge is not the only development platform: large libre soft-
ware projects usually administrate their own infrastructure,
and also many other SourceForge-like sites exist, in some
cases linked to language or national communities. This
means on one hand that we are not considering a lot of
libre software which is being developed outside SourceForge
(although many of the developers of that software are prob-
ably also users of this site), and on the other that the study
could be skewed by ignoring some communities which are
not represented in SourceForge, but in other facilities. Fur-
ther studies should address this issue, and determine how
good the SourceForge population is as a proxy of the devel-
oper population.

On a more socio-economic perspective, the findings pre-
sented in this paper could be related to other parameters
characterizing the countries, looking for correlations which
could explain the different quantities of developers, such as
the GDP, the GDP per capita, Nielsen/Netratings, or other
economic and technological parameters.

Especially interesting is also the issue of finding projects
that are driven by local activity, i.e. projects whose contrib-
utors are from the same country, region or cultural environ-
ment. This could be a way of finding possible splits of the
libre software community, and a first step towards identify-
ing parameters leading to collaboration between developers.
Cultural, language and other barriers should also be con-
sidered. In this sense, a recent change in the SourceForge
platform has been the inclusion of a language field (although
up to the moment less than 25% have specified a different
language from the default ’English’).

All of this could also be extended to a social network anal-
ysis, such as performed on libre software developers [8, 7, 9],
but taking into account geographical information.

7. ACKNOWLEDGMENTS
We thank the SourceForge team, and Greg Madey from

the University of Notre Dame, for providing access to the
SourceForge data. Also, a big thank you goes to our col-
leagues from GSyC/LibreSoft for their help verifying the
validity of the data.

8. REFERENCES
[1] M. Conklin, J. Howison, and K. Crowston.

Collaboration using OSSmole: A repository of FLOSS
data and analyses. In Proceedings of the International
Workshop on Mining Software Repositories, pages
126-130, St. Louis, Missouri, USA, May 2005.

[2] P. A. David, A. Waterman, and S. Arora. FLOSS-US.
The Free/Libre/Open Source Software Survey for
2003. Technical report, Stanford Institute for
Economic and Policy Research, Stanford, USA, 2003.

[3] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg.
A quantitative profile of a community of Open Source
Linux developers. Technical report, October 1999.

[4] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles.
Survey of developers (free/libre and open source
software: Survey and study). Technical report,
International Institute of Infonomics. University of
Maastricht, The Netherlands, June 2002.

[5] K. Healy and A. Schussman. The ecology of
open-source software development. Technical report,
University of Arizona, USA, Jan. 2003.

[6] D. Lancashire. Code, culture and cash: The fading
altruism of Open Source development. First Monday,
6(12), 2001.

[7] L. Lopez, J. M. Gonzalez-Barahona, and G. Robles.
Applying social network analysis to the information in
CVS repositories. In Proc Intl Workshop on Mining
Software Repositories, pages 101-105, Edinburg, UK,
2004.

[8] G. Madey, V. Freeh, and R. Tynan. The open source
development phenomenon: An analysis based on social
network theory. In Americas Conf on Information
Systems, pages 1806-1813, Dallas, TX, USA, 2002.

[9] M. Ohira, N. Ohsugi, T. Ohoka, and K.-I. Matsumoto.
Accelerating cross-project knowledge collaboration
using collaborative filtering and social networks. In
Proceedings Intl Workshop on Mining Software
Repositories, St. Louis, Missouri, USA, May 2005.

[10] G. Robles and J. M. Gonzalez-Barahona. Developer
identification methods for integrated data from
various sources. In Proceedings of the International
Workshop on Mining Software Repositories, pages
106-110, St. Louis, Missouri, USA, May 2005.

[11] G. Robles, S. Koch, and J. M. Gonzalez-Barahona.
Remote analysis and measurement of libre software
systems by means of the CVSAnalY tool. In Proc 2nd
Workshop on Remote Analysis and Measurement of
Software Systems, pages 51-56, Edinburg, UK, 2004.

[12] G. Robles, H. Scheider, I. Tretkowski, and N. Weber.
Who is doing it? A research on libre software
developers. Technical report, Technische Universitaet
Berlin, Berlin, Germany, Aug. 2001.

[13] I. Tuomi. Evolution of the Linux Credits file:
Methodological challenges and reference data for Open
Source research. First Monday, 9(6), 2004.

150

Textual Allusions to Artifacts
in Software-related Repositories

Gina Venolia
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
http://research.microsoft.com/~ginav

gina.venolia@microsoft.com

ABSTRACT
Much of what is written about a software project is soon
forgotten. Software repositories are full of valuable information
about the project: Bug descriptions, check-in messages, email and
newsgroup archives, specifications, design documents, product
documentation, and product support logs contain a wealth of
information that can potentially help software developers resolve
crucial questions about the history, rationale, and future plans for
source code. For a variety of reasons, developers rarely turn to
these resources when trying to answer these questions. We are
building a full-text search that encompasses multiple repositories.
To effectively implement full-text search in the absence of
hyperlinks we propose detecting textual allusions to software
artifacts in natural-language prose. Allusions are shown to
contribute a significant portion of the relationships represented in
the graph.

Categories and Subject Descriptors
H.3.1 [Information storage and retrieval]: Content Analysis and
Indexing; H.3.3 [Information storage and retrieval]:
Information search and retrieval—Retrieval models; H.5.3
[Information interfaces and presentation]: Group and
Organization Interfaces—Computer-supported cooperative work;
K.6.3 [Management of computing and information systems]:
Software Management—Software development, Software
maintenance.

General Terms
Documentation, Experimentation, Human Factors.

Keywords
Software development, project memory, software artifacts, search.

1. INTRODUCTION
In a series of surveys and interviews at Microsoft, my team
learned that the most serious problem that software developers
face is “understanding the rationale behind a piece of code” [4].
It’s likely that this is a universal phenomenon, not limited to
Microsoft. There are vast information repositories—bug
descriptions, check-in messages, email and newsgroup archives,
specifications, design documents, product documentation, product
support logs, etc.—that have the potential to answer questions
about rationale, but we found that developers rarely access them.
Instead they examine the source code text and probe it in the
debugger, and if those fail, they typically initiate a face-to-face
conversation with the person they think will know the answer.
This investigation process, while often successful, costs precious
time and causes interruptions.
There are many good reasons for a developer to neglect the
electronic repositories when trying to understand code. The
developer does not know a priori whether a topic of interest is
addressed in any repository. Fast full-text search is not
implemented for all the repositories. Each repository has its own
search and browse tools, and there’s little consistency among
them. It may be difficult to formulate a full-text query for the
topic of interest, or to browse meaningfully for artifacts related to
it. It may be difficult to assess whether an artifact (found by
searching or browsing) is the last word on the topic or is
hopelessly out-of-date. Given these barriers it’s easy to
understand why developers choose to neglect the electronic
repositories.
To address these deficiencies developers need a good full-text
search tool that spans the relevant repositories. Modern full-text
search systems rely in part on link-analysis scoring algorithms,
such as PageRank [5] and HITS [3], which estimate each artifact’s
importance based on analysis of the hyperlinks among the
artifacts. Unfortunately hyperlinks are rare among software
artifacts. This paper presents an approach to simulating hyperlinks
by detecting textual allusions to software artifacts in the natural-
language prose that is already present in many software artifacts.

1.1 Related work
The Hipikat system [1] provides artifact-based search for code-
related artifacts. It combines structural relationships with
relationships found by a measure of textual similarity.
Team Tracks [2], a recommender system for methods in source
code, relies on implicit relationships discovered by aggregating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

151

developers’ navigation patterns in code to compute its
recommendations.

2. REPRESENTING THE GRAPH
There are many types of software-related artifacts: source code
files, classes, methods, bugs, check-ins, emails, specs, etc. While
there are some common attributes across artifacts (e.g. a name, a
brief description, and a date that the artifact first came into
existence) each type may also have properties particular to it.
Likewise there are many types of relationships: member-of,
implements, mentions, addressed-to, etc. Together these
requirements suggest that an appropriate representation may be a
directed multi-graph where the nodes (representing the artifacts)
and arcs (relationships) are typed.
Each node and arc in the index has an identifier that may be
derived directly from its type and its identifying properties. In our
present implementation each node has an identifier, which is a
string composed of its type name and its identifying properties.
For example the bug #12345 in the AppBugs database might be
named “bug:appbugs:12345”. The utility of this identifier will be
covered in greater detail later in this section.
In the current implementation the nodes and arcs share a common
abstract base class, Entry, properties for a unique identifier for
the entry and the dates that the entry was created and deleted,
which may be unspecified. Artifacts, or nodes in the graph, are
represented by the abstract Item type, which derives from
Entry. It extends Entry with properties for the human-readable
name for the item, the string on which full-text search operates,
and a URL or command for opening a viewer on the actual artifact
(all are optional). Relationships, or arcs in the graph, are
represented by the abstract Link type, which derives from
Entry. It extends Entry with properties for the identifiers of
the endpoint items, and an optional estimate of the confidence in
the relationship.
The graph is represented in a persistent store called the index. The
index is expected to be very large, so it is expected to be deployed
as a shared resource. For these reasons the index is stored as a
database using Microsoft SQL Server 2005. Stored procedures
and web service APIs provide mechanisms for submitting,
fetching, and deleting entries and for executing queries and
retrieving results. Full-text search indexing is enabled for the
Item name and search text columns.

When an entry is submitted to the index, the index first checks
whether it already contains one with that identifier. If not then one
is created with the specified property values; otherwise any
newly-specified optional property values override the old ones.
(The rationale for this behavior will be explained in section 3.4.)
This infrastructure provides a generic base on which a rich index
of domain-specific information can be built.

3. PROVISIONING THE INDEX
An index is provisioned with artifacts and relationships from a
collection of information repositories, e.g. bug databases, source
code control system databases, email archives, etc. There are three
distinct categories of provisioning—source schema, file structure,
and textual allusions—discussed in the next three subsections.

3.1 Crawling the Source Schema
Each of the data sources has a unique programmatic interface,
requiring custom software we call a crawler. The crawler uses the
repository’s interface to query for new information, creates
instances of types derived from Item and Link to represent the
new information, and then submits the instances to the index. The
crawlers are run on a periodic basis, though in principle a crawler
could be run when notified of new data by the data source.
For example consider the source-schema entries created by a
crawler on a particular source code control system database. With
this particular source code control system, check-ins are
numbered sequentially. The crawler keeps a record of the last
crawled check-in. When it runs, it queries the repository for the
subsequent check-in numbers, and then iterates through each one,
requesting detailed information about it. An instance of
CheckInItem (i.e. the type derived from Item that represents a
check-in) is created, along with a DomainAccountItem to
represent the author, and an AuthorLink that connects the two
items. Then, for each file revision in the check-in, the crawler
created a RevisionItem, which is associated with the
CheckInItem using a ChangeLink. A file revision is
conceptually bound to a particular file path, so the crawler creates
items to represent file itself and the directory hierarchy above it,
associated with a chain of ContainsLink instances. The
consecutive revisions are linked—a RevisionItem
representing the previous revision is created and a NextLink
relating it to the present RevisionItem.

Our current implementation has crawlers for the source code
control system, the bug database, and email. In the future we
expect to implement crawlers for Active Directory (the company-
wide database that stores organization chart, email discussion list
membership, and security group membership), a file system
crawler, a website crawler, an RSS/Atom crawler for gathering
weblogs, and perhaps others.

3.2 Cracking Structured Files
Structured files are an important source of artifacts and
relationships in the index. Files occur many places in the
repositories, e.g. as an attachment to an email or bug, or stored in
a source code control system, file server, or web server. When a
file is encountered it its type is used to look up a cracker, a piece
of code that reads the file and produces items and links to
represent its contents. For example a source code file contains
useful structure, as does an XML file that controls a build process;
on the other hand a Microsoft Word document has structure, but
none that relates specifically to software-related artifacts.
The cracker “cracks open” the file and creates entries to represent
its structure. The C# cracker runs a compiler front-end and walks
the resulting abstract syntax tree to produce ClassTypeItem
instances, ImplementsLink relationships to other
ClassTypeItem instances, FieldMemberItem and
MethodMemberItem instances and ContainsLink instances
to associate them with the ClassTypeItem, etc. A build-file
cracker would associate the items representing various source files
with the item representing the binary output file.
Our current implementation has crackers for C/C++ files, which
create shallow structure, C# files, which creates deeper structure,
and any files for which an IFilter can be found (IFilter is public

152

interface for components that convert files to plain-text streams;
there are IFilters for dozens of file formats, including Microsoft
Word, Excel, and PowerPoint, and Adobe PDF), which creates no
structure but extracts a plain-text version of the file’s contents,
making it searchable and allowing it to be scanned for textual
allusions. In the future we expect to implement a deeper cracker
for C/C++, a cracker for Visual Studio project files, crackers for
binary files, and perhaps others.

3.3 Scanning for Textual Allusions
Any text that is presumed to be natural-language prose that a
crawler or cracker encounters is submitted to a battery of
scanners, which scan the text for textual allusions to software-
related artifacts and create entries to represent them. Each check-
in crawled by the source code control system crawler has a check-
in message which typically contains prose, as do comments in
C++ source code, emails, word processing documents, and web
pages. Each item type may contribute a scanner to the battery. We
currently implement several scanners:
EmailAddressItem: Email addresses, e.g. “foo@bar.com”,
recognized with a simple regular expression.
LocalLocationItem: Local file paths, e.g.
“C:\folder\foo.txt”, recognized with a simple regular expression.
UncLocationItem: Universal Naming Convention file paths,
e.g. “\\server\folder\foo.txt”, recognized with a simple regular
expression.
IdentifierItem: Uses a simple regular expression to find the
kinds of names that are often used for software-related artifacts,
e.g. “FooBar”, “foo_bar”, “foo123”, etc..
NumberItem: Uses a simple regular expression to find strings of
digits, e.g. “12345”, because software-related artifacts are often
numbered.
HttpLocationItem: While URLs are detected using a regular
expression, redirection can cause a single page to have multiple
URLs so the HttpLocationItem attempts to fetch any URL
found by the regular expression, and uses the final URL to create
the identifier.

BugItem: At Microsoft (and likely elsewhere), people use a wide
variety of wording to reference bugs (“bug 12345”, “resolves
12345”, “duplicate of 12345”, “fixes 12345, 23456, and 34567”,
etc.) the regular expression used by the BugItem scanner is
much more complex than the others. At Microsoft there are
hundreds of bug databases, with conflicting number spaces, so
more work must be done to resolve the reference to a specific
database. Most allusions to bugs rely on context to imply the
particular database. The current system resolves the ambiguity by
querying the index to find the bug database that’s most strongly
connected to the item that includes the scanned text. When a
candidate bug database is detected, the BugItem scanner queries
it for the specified bug number and then discards reference if the
bug don’t exist. (Note that we make no attempt to resolve vague
allusions like, “that bug we worked on yesterday”.)
For example, consider a hypothetical check-in message: “This
fixes bug 12345, which was an off-by-one error causing an array
scan to terminate before the end. It also caused that intermittent
problem reported by foo@bar.com.” The message contains a
reference to a bug and a reference to an email address. When the
BugItem scanner detects the bug reference, it creates an instance
of BugItem and an instance of MentionsLink associating it
with the present CheckInItem. The NumberItem scanner
also detects a reference to the number 12345, and therefore
instantiates a NumberItem instance and a MentionsLink. A
similar process happens with the EmailAddressItem scanner.
The other scanners are run but don’t detect any allusions. Thus
the knowledge casually coded into the check-in message is
normalized into data structures.
In the future we expect to implement scanners for build numbers,
knowledge base articles, domain account aliases, and method
names. Method names might be approached with a combination of
dictionary-based and regular expression techniques but both are
problematic because, at least in current work practice, people
often accidentally misspell identifiers and intentionally transform
them into plurals (-s) and gerunds (-ing).

3.4 More about Provisioning
The crawlers, crackers, and scanners work in concert to provision
the index with artifacts and relationships. They may be augmented
by other techniques. Text similarity, used by the Hipikat system
[1], could be applied to the index to create additional links, using
the Link confidence property to represent the degree of
similarity. Relationships between items discovered in navigation
history, used by the Team Tracks system [2], could be turned into
additional links (again using the confidence property), and indeed
be extended beyond methods to include other artifacts such as
bugs, emails, specs, URLs, etc. Simple rule-based approaches
could be used to associate check-ins with contemporaneous bug
actions by the same author. There may be other automated
techniques for provisioning the index. They would work
independently but the combined effect creates a richly-connected
graph of software-related artifacts. In addition to automated
techniques tools could allow the user to create items and
relationships, such as annotations, and user-specified keywords
that are automatically linked to the items that contain them.
Note that in several cases the crawlers, crackers, and scanners will
submit items that may already be in the index. For example the
bug database crawler may create a BugItem for bug 12345 and

Table 1: The number of items of each type, and their average
number of incident arcs.

Type Count Avg. Degree
SCCS* file revision 2,688,714 2
SCCS file 878,736 3
SCCS check-in 379,913 8
SCCS folder 243,756 5
Identifier 190,177 4
Number 148,498 4
Bug 93,554 6
Bug revision 49,731 12
Local file path 17,436 3
Email message 12,203 47
HTTP URL 11,377 6
Email conversation 8,292 2
Domain account 8,067 70
Server file path 3,823 2
Email address 266 43
SCCS database 17 22,493
Bug database 4 23,388

* Source code control system

153

the BugItem scanner may do the same. While the crawler has
detailed information about the bug, and may thus populate the
optional properties, the scanner knows only enough to create the
item’s identifier. To further complicate matters, either may
encounter the bug first. The semantics of submission described in
the section 2 allow the crawler and scanner (and any other
mechanisms that provision the index) to operate independently.

4. RESULTS
We have built an index based on some of the data sources related
to the development of the Microsoft Windows operating system.
Activity between July 1st, 2005 and January 31st, 2006 has been
gathered from eighteen source code control system databases one
bug database. (For this analysis the contents of the source code
control system file revisions were not gathered.) In addition, the
index includes about twelve thousand emails dating from 2005
from several internal build-related email discussion lists.
The index includes 4,734,565 items and 9,613,398 links of
various types (see Tables 1 and 2). (Note that each bug is
composed of a series of bug revisions, each representing a specific
action done to the bug: create, edit, resolve, close, etc.) While the
average node degree (i.e. the average number of edges incident to
the node) is 2.0, the distribution is highly skewed. The degree
varies greatly by the node type, as shown in the Avg. Degree
column of Table 1.
The links representing textual allusions are plentiful, comprising
19% of the links in the index. Table 3 categorizes the
MentionsLink instances in the index by the type of item in
which the allusion occurred and the type of item alluded to. (Note
that text associated with a bug is counted twice, once for the bug
revision and once for the bug itself; the Bug revision and Bug
columns in Table 3 should be interpreted accordingly.)

5. DISCUSSION AND CONCLUSION
This effort combines the traditional representation of structured
relationships with detection of textual allusions. These allusions
contribute a substantial portion of the relationships represented in
the index. Textual allusions are only one way to go beyond
structured relationships. Text similarity, explored in the Hipikat
project, and navigation paths, explored in the Team Tracks

project, and other techniques, may complement the structured and
allusive relationships.
The use of identifiers and the associated semantics of submitting
items to the index combine to support decoupling of the various
components contributing to the index. This is an important
property if the system is to be allowed to grow organically,
allowing new data sources to be added without much concern to
the prior or subsequent additions.
While this initial work suggests that the approach is promising,
there is a lot of work to do to evaluate whether it has benefits in
real-world usage of tools built on the index. Tools that employ the
index to deliver benefit to developers need to be fleshed out and
evaluated in lab-based and field studies. Once deployed, their
utility in helping developers understand the rationale behind code
will become clearer.
If such a system is useful for software developers and their
cohorts then it may be applicable to other knowledge work
environments.

6. REFERENCES
[1] Davor Čubranić, Gail C. Murphy, Janice Singer, Kellogg S.

Booth, “Hipikat: A Project Memory for Software
Development,” in IEEE Transactions on Software
Engineering 31(6), IEEE Computer Society, pp. 446-465,
June, 2005.

[2] Robert DeLine, Mary Czerwinski, and George Robertson,
“Easing Program Comprehension by Sharing Navigation
Data,” in Proc. VL/HCC’05, IEEE Computer Society, pp.
233-240, 2005.

[3] Jon Kleinberg, “Authoritative Sources in a Hyperlinked
Environment,” in J-ACM 46(5), pp. 604-622, 1999.

[4] Thomas D. LaToza, Gina Venolia, Robert DeLine,
“Maintaining Mental Models: A Study of Developer Work
Habits,” to appear in Proc. ICSE’06, ACM Press, 2006.

[5] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd, “The PageRank Citation Ranking: Bringing Order
to the Web,” Stanford Digital Libraries Working Paper,
1998.

Table 3: The number of textual allusions by type of the item in which they were found and
the type of item referred to.

 Mentioning Item Type
 SCCS check-in Email Bug revision Bug Total

Identifier 221,510 197,301 298,173 224,436 941,420
Number 309,403 209,630 89,139 66,431 674,603
Bug 81,680 20,440 3,563 1,826 107,509
HTTP URL 939 22,542 28,748 25,480 77,709
Local file path 495 35,729 10,164 6,458 52,846
Server file path 280 4,272 2,359 1,892 8,803M

en
tio

ne
d

Ite
m

 T
yp

e

Email address 21 773 241 207 1,242
 Total 614,328 490,687 432,387 326,730 1,864,132

Table 2: The number of links
of each type.

Type Count
Contains 5,578,988
Mentions 1,864,132
Next 1,590,770
Author 470,569
Recipient 49,118
Owner 43,683
Resolved-by 6,426
Closed-by 5,801
Reply 3,911

154

Enriching Revision History with Interactions

Chris Parnin, Carsten Görg
�

, Spencer Rugaber
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

�vector,goerg,spencer�@cc.gatech.edu

ABSTRACT
Revision history provides a rich source of information to improve
the understanding of changes made to programs, but it yields only
limited insight into how these changes occurred. We explore an ad-
ditional source of information – program viewing and editing his-
tory – where all historical artifacts associated with the program are
included. In particular, we suggest augmenting revision histories
with the interaction history of programmers. Using this additional
information source enables the development of several interesting
applications including an influence-recommendation system and a
task-mining system. We present some results from a case study
in which interaction histories from professional programmers were
obtained and analyzed.

Categories and Subject Descriptors: H.4[Information Systems
Applications]:Information storage and retrieval.

General Terms: Measurement.

Keywords: Interaction history, revision history, data mining.

1. INTRODUCTION
During the process of developing software, programmers leave

behind traces of their intentions, tasks, and missteps. Researchers
have examined how to extract these traces for the purposes of ac-
quiring additional insight into a program’s history and the develop-
ers involved in the process. Artifacts created as byproducts during
the development process offer a trove of insightful information –
one popular artifact is the source code revision history.

Researchers have proposed how to use revision history in appli-
cations such as program evolution or defect detection. For example,
Görg and Weißgerber [2] discovered incomplete refactorings that
did not preserve semantics by analyzing revision histories. Alterna-
tively, other researchers have examined how to use revision history
to gain perspective into programming activities and developers. Sli-

�The author was supported by a fellowship within the Postdoc-
Program of the German Academic Exchange Service (DAAD).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

werski et al. [9] examined revision histories to find changes to a
previous bug fix and analyzed which day of the week contributed
to the most such incidents – Friday. Mierle et al. [5] attempted to
find correlations between a student’s grade and properties extracted
from the student’s revision history.

Revision history can be defined as a collection of revisions to
a file committed by an author through a transaction or change re-
quest. Within each transaction, several pieces of metadata can be
captured: date and time, change description, and change identifier
or bug fix identifier. Furthermore, information about which meth-
ods have been changed between revisions can be derived.

Revision history transcribes various snapshots of source code;
however, it has limited ability in explaining how the transition be-
tween revisions occurred. Information such as what methods were
frequently referenced by programmers to perform a change or the
order of edits is missing. Information detailing how a revision
changed can be obtained through analyzing the interaction history.
Interaction history records a user’s interactions, captured by an ap-
plication such as a viewer or editor, to understand more about the
user and the program. All interactions are recorded into a stream of
interaction events.

In attempting to understand a program’s history, all possible arti-
facts should be used. Interaction history provides detailed informa-
tion about a programmer’s activities; however, the stream-like na-
ture of interaction history makes segmenting into meaningful ses-
sions problematic. A reasonable approach is to use revision his-
tory as the baseline for segmenting interaction history. With this
segmentation, an interaction history session can augment the as-
sociated revisions. In the other direction, revision history provides
more fine-grain details about the changes made to a program, while
interaction history is primarily concerned with the locations of code
involved with certain interactions. In the following table, the prop-
erties of revision and interaction history are contrasted.

properties revision history interaction history
metadata frequency per transaction per event
metadata type time, log, ID time, target, event type

In this paper, we propose that the interaction history of a pro-
grammer interacting with an interactive development environment
(IDE) can be used in conjunction with revision history to enrich
current approaches. We detail how to obtain the interaction his-
tory from an IDE and explain what properties to examine. Fi-
nally, we illustrate the use of interaction history in an influence-
recommendation system and a task-mining system using interac-
tion history obtained from a case study of professional program-
mers.

155

2. INTERACTION HISTORY

2.1 Background
An interaction history is a record of a user’s interactions with

an application for the purpose of providing insight into the data
as well as execution of future interactions. Alternative terms for
interaction history include navigation history, user history, compu-
tational wear, edit wear, source code wear. The first discussion of
interaction history emerged from work on edit wear/read wear [3].
Wear is the concept of digital objects embedding the history of its
interactions, much like the dog-eared pages in a book indicate fa-
vorite passages. As an example, a text document records how often
a line was edited. The frequency of editing a line is then conveyed
in a line-based visualization that is embedded in the scrollbar of the
document.

Researchers have developed recommendation systems which an-
alyze navigation history in order to recommend that locations of
interest. In FAN [1], navigational history is analyzed to display a list
of methods that are frequently accessed next after visiting the cur-
rent method. In NavTracks [8], navigation loops are recovered from
recent navigation paths and the files related to the current method
are displayed. Both FAN and MYLAR [1, 4] have used a degree of in-
terest model based on edit and navigation frequency to indicate the
‘hot spots’ in source code. Finally, Schneider et al. [7] have used
interaction history to support awareness of activities among a team.

Previous research with interaction history has focused on under-
standing navigation patterns and deriving simple frequency statis-
tics. We propose a set of abstractions over interactions that allow
more interesting analyses to be performed.

2.2 Abstracting Interactions
Programmers interact with source code through an IDE and revi-

sion control system. Abstractions of these interactions allow us to
reason about the semantic implication of different interactions with
source code entities (in this paper we assume methods).
The categories of interactions with an IDE are the following:

navigation: A command used to go to a specific location in a file
such as a to method.

click: A mouse selection of a method.

edit: A change in a line of code.

inspect: An examination revealing the metadata associated with a
method such as a comment or type information. This is typi-
cally accomplished by hovering the mouse over the method.

query: A search for the locations of a method.

shelve: A text editing operation on code, such as a copy or paste.

Interaction history is represented as a stream of interaction events,
where each event is a tuple of method, interaction type, and time-
stamp. An example is as follows:

��A�click�1���A�edit �2�� �A�copy�3���B� paste�4���C�nav�5��

When using a revision control system, programmers also interact
with source code. A list of interactions would include:

revision: A set of changes made to a file.

tag: A set of metadata such as comments, bug numbers, and change
packages associated with a revision.

2.3 A Visual Studio Plug-in
We built a Visual Studio plug-in called InteractionHistoryDB

that records the interaction history of programmers using Visual

Studio. The plug-in registers interactions exposed through the Vi-
sual Studio add-in interface and logged the active method targeted
by the interaction.

We identified six interaction types, however, we only recorded
click, navigation, shelve, and edit interactions in our experiments.
Click events were recorded using a mouse-message hook. Navi-
gation events included commands such as goto definition, change
active tab, select a class or file, navigate from a find-in-files result.
Edit actions were recorded by listening to events raised when a line
of code was changed. The edit event is not raised until after the
user changes focus from the line being edited.

2.4 Case Study
Ten employees from a defense contractor volunteered to partic-

ipate in a trial use. The projects the employees worked on were
written in C++ and C# and varied in size from 50k to 200k lines of
code. Some projects were over ten years old while others were in
new development.

3. METADATA ANALYSIS
In analyzing program history, the questions asked about the his-

tory are generally motivated by two different perspectives:

program-oriented: Analysis focuses on retrieving code that satis-
fies a given query.

developer-oriented: Analysis focuses on understanding proper-
ties associated with a developer.

Detecting bad smells in code is an example of program-oriented
analysis, while determining what day of the week do the most nav-
igations occur is an example of developer-oriented analysis.

Regardless of perspective, the approach in analyzing the meta-
data of interaction history is much like revision history; however,
different types of interactions are examined, and the granularity of
the events are more fine. In general, revision history is a record of
what happened, while interaction history is a record of how changes
happen.

Localized frequency is the analysis of how events occur over a
period of time. This analysis can be used in forming models of
programmer interest and understanding the structure of program-
ming activities. Later in this section, we provide examples of how
interactions from interaction history can be used to enrich analysis.

3.1 Localized Frequency
The period of time or frequency that a programmer interacts with

a method can be used to indicate interest. When users navigate
source code, they often “thumb” through the code to locate the next
method of interest. This can produce some interactions which are
not desirable for analysis.

With localized frequency, a model of interest used in queries for
analysis or filtering interaction data can be derived to mitigate this
problem. We define this model as intensity.

Intensity. The intensity of an interaction with a method is the num-
ber of prior consecutive interactions with the same method
during the period of interest.

For the event stream “AAABBC”, the respective intensity of each
interaction event would be 0,1,2,0,1,0.

156

Although a programmer may interact with many methods in the
course of a session, only few exhibit high intensity. One possible
interpretation of intensity is that method groups with high intensity
are the targeted methods of interest to a programmer. In the valleys
between two peaks of high intensity are smaller peaks of medium
and low intensity activity. These lower intensity activities can re-
sult from the need to correct compile errors, update references, and
search for the next item of interest.

Intensity takes a simplified, discrete view of localized frequency;
in reality, a programmer may need to briefly transition away from
a method and then return. This requires a continuous evaluation of
localized frequency that we call momentum.

Momentum. The momentum at time tn of an interaction event is:

momentum�tn� � intensity�t0�� e�rtn

where r is the discount rate which regulates the speed of ex-
ponential decay, t0 is the time the event commenced, and tn
is n steps after t0.

Instead of having a value of zero after a transition, momentum
exponentially decays the intensity. An interaction event having an
intensity of 20, with a discount rate of 0.1 would have a momentum
of 7.4 after ten steps and a momentum of 1.0 after 30 steps. There
is a small twist: a method that is decaying can be reinvigorated
when revisiting the method. In this case, the remaining momentum
is accumulated with the newer intensity, and t0 is reset to be the
new time.

Momentum gives a better measure of which methods are active
during a window of time; however, its continuous nature can make
it more difficult to apply in some situations.

3.2 Example Queries

What term is most commonly searched? Analyzing the distribu-
tion of search terms may reveal items difficult to locate, items
not immediately understood by the programmer, or items rel-
evant to the current task. Filtering out events without query
interaction types results in the following example interaction
event stream:

��“display”�query�1���“screen”�query�56���“display”�query�78��

In this stream, 66% of the queries were for “display” and
33% for “screen”.

What is the ratio of transitions to edits? Understanding the rela-
tionship a programmer’s edits and transitions between meth-
ods in a project inspires several applications: (1) it serves as
a baseline for comparing tools in experimental studies, (2)
the rate of change of the navigation/edit ratio can be used to
determine when a programmer is searching, and (3) it can
assist in classifying tasks applied to the same project.

Consider the following event stream as an example:

��A�click�1���A�edit�2���A�click�3���A�edit�4���B�click�5��

To avoid a heavily edited method from imposing too much
bias on the ratio, navigations within methods (in our exam-
ple (A,click,3)) are first removed, and then from the resulting
stream the consecutive edits within a method (in our example
(A,edit,2) and (A,edit,4)) are considered as one edit. After this
preprocessing, the stream appears as follows:

��A�click�1���A�edit�2���B�click�5��

The navigation/edit ratio for this stream is 2.0.

What time of day has the highest activity? Activity analysis can
assist in studies of work patterns or in giving practical guide-
lines of when to schedule meetings.

To calculate this measure, the interaction event stream must
first be segmented into different sessions corresponding to
each hour of the day. Then, the length of each session be-
longing to the same hour is accumulated and averaged.

In data from our case study, 2-3pm was the period of highest
activity for almost all programmers.

4. APPLICATIONS
In this section, we present two systems focusing on program-

oriented analysis of interaction history.

4.1 An Influence-Recommendation System
Programmers frequently copy and paste code during the devel-

opment process. The purpose of copying code varies: sometimes
the programmer is avoiding the need to retype a variable name, or
the copied code is being used as a template for a new variation.

Method A is influenced by method B if B contributed to the im-
plementation of A through the importation of code. The influence
set of A can be calculated from an interaction history by finding the
origin of pasted code.

In f luence�A� � �B � copy from B and paste to A�

In the following interaction event stream:

��A�copy�1���B� paste�3�� �C� paste�5�� �C�copy�6�� �D� paste�8��

the influence sets are the following:

method A B C D
influence set /0 �A� �A� �C�

strength: The number of lines copied.

complexity: The cyclomatic complexity of code copied.

support: The number of occasions the method was influenced by
the same method.

Finally, with the influence sets available for each method, an
influence-recommendation system can be built. When a program-
mer is interacting with a method, the influence set can be used to
recommend to the programmer items of interest in a contextual list
displayed in an IDE. In preliminary analysis of our case study data,
influence sets found (1) methods complementary to a process such
as starting and stopping a server, (2) code duplication, and (3) meth-
ods serving as sources of examples (e.g. how to invoke a socket
function call).

4.2 A Task-Mining System
Consider these situations:

1. During development of a major product release, the project
manager anticipates the need to add support for a new sys-
tem. The program developers interleave their normal pro-
gramming tasks with integrating support for the new sys-
tem over several months of development. Unfortunately, the
project manager’s gamble does not pay off; the customer de-
cides not to use the new system. As a result, the programmers
need to identify and remove the changes that were made to
support the new system.

157

2. A program developer needs to perform an update to an es-
tablished project. The source code contains millions of lines,
but the update should only involve a relatively small subset.
The programmer would like to explore the program as effi-
ciently as possible in order to make the changes, but is too
unfamiliar with the relevant parts of the source code to be
sure how best to proceed.

The tasks facing our two users are different; however, in both
cases, we have a user who is interacting with a large set of highly-
structured data and attempting to solve a specific task. Further, their
tasks require connecting various parts of the data (e.g. different files
or methods) that are relevant in solving their task. Discovering or
recalling these connections is costly; the connections may not be
readily apparent from the structure, or only a few relevant pieces of
information are needed among a large selection of data.

In the first scenario, identification of different tasks performed
with the source code can ease the search for methods related to
implementing the new system. To identify the distinct tasks per-
formed by the programmers, clustering of the interaction sessions
can be performed. Further, labels from revision history supplement
identification of different sessions.

In the second scenario, providing recommendations for related
interactions enables the programmer to focus on understanding just
the relevant methods. Recommendations can be queried based on
the last few interactions of the programmer with the IDE.

To mine these tasks from interaction history, the data must first
be segmented into different sessions and then represented in a vec-
tor space model (VSM). The straightforward approach is to use re-
vision history to group interaction events related to the same groups
of transactions in the same session. Each session is then repre-
sented as a vector by counting the occurrences of a method and its
interaction type.

Distance metrics measure the similarity of two sessions. Two
common metrics are the euclidean distance and the cosine distance.
The euclidean distance uses the L2 norm or dot product of two vec-
tors. The cosine distance measures the angle between the vectors
normalized by their magnitude. In both metrics, a higher value in-
dicates a higher similarity.

In the following example, three sessions are encoded as vectors
and stored in a matrix. In the first session, “payroll” was edited five
times, “print” was navigated to three times, “report” was navigated
to two times. In the first session, the methods “employee”, “sales”,
“dbquery” were not interacted with.�
� payroll�edit : 5 employee�nav : 3 dbquery�edit : 6

print�nav : 3 payroll�edit : 5 employee�nav : 3
report�nav : 2 sales�edit : 1 sales�nav : 2

�
�

After the sessions are represented in the VSM, several refine-
ments can be made. Methods that are frequently or rarely interacted
with can be weighted using measures such as tf-idf [6].

To identify distinct tasks, a standard clustering algorithm such
as k-means can be performed. Reconstruction of the vector space
with transformations such as independent component analysis may
be necessary in order to more easily discriminate different tasks.

Using implicit query, the IDE can generate recommendations
based on the closest session or centroid. If the programmer vis-
ited “employee” and edited “payroll” then an implicit query could
be constructed as follows:�

employee�nav : 1
payroll�edit : 1

�

producing the following table of relevant interactions:

v1 v2 v3
dot-product 5 8 3
cosine 0.57 0.96 0.31

In this case, v2 is returned as the most relevant interaction vector.
An IDE, can now suggest editing sales through a degree-of-interest
visualization or in a task pane.

5. CONCLUSION
In this position paper, we show that by incorporating interac-

tion history with traditional approaches used with revision history,
further insight can be gained. In program-oriented analysis, in-
teraction history enriches analysis by introducing data previously
unattainable and provides more options for making decisions in fil-
tering data. In developer-oriented analysis, more data is available
for understanding how the programmer performed tasks.

We conclude that interaction history: (1) can be easily obtained,
(2) contains a rich source of interesting data, (3) offers powerful
applications in recommendation systems, and (4) complements re-
vision history as a source of insights into programmer behavior.

6. REFERENCES
[1] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson.

Towards understanding programs through wear-based
filtering. In SoftVis ’05: Proceedings of the 2005 ACM
symposium on Software visualization, pages 183–192, New
York, NY, USA, 2005. ACM Press.

[2] C. Görg and P. Weißgerber. Error detection by refactoring
reconstruction. In MSR’05: Proceedings of the International
Workshop on Mining Software Repositories, New York, NY,
USA, 2005. ACM Press.

[3] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless.
Edit wear and read wear. In CHI ’92: Proceedings of the
SIGCHI conference on Human factors in computing systems,
pages 3–9, New York, NY, USA, 1992. ACM Press.

[4] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest
model for ides. In AOSD ’05: Proceedings of the 4th
international conference on Aspect-oriented software
development, pages 159–168, New York, NY, USA, 2005.
ACM Press.

[5] K. Mierle, K. Laven, S. Roweis, and G. Wilson. Mining
student cvs repositories for performance indicators. In MSR
’05: Proceedings of the 2005 international workshop on
Mining software repositories, pages 1–5, New York, NY,
USA, 2005. ACM Press.

[6] G. Salton and C. Buckley. Term weighting approaches in
automatic text retrieval. Technical report, Cornell University,
Ithaca, NY, USA, 1987.

[7] K. Schneider, C. Gutwin, R. Penner, and D. Paquette. Mining
a software developer’s local interaction history. In MSR ’04:
Proceedings of the 2004 international workshop on Mining
software repositories, pages 106–110, 2004.

[8] J. Singer, R. Elves, and M.-A. D. Storey. Navtracks:
Supporting navigation in software maintenance. In ICSM
2005: Proceedings of the 21st IEEE International Conference
on Software Maintenance (ICSM’05), pages 325–334. IEEE
Computer Society, 2005.

[9] J. Sliwerski, T. Zimmermann, and A. Zeller. When do changes
induce fixes? In MSR ’05: Proceedings of the 2005
international workshop on Mining software repositories, New
York, NY, USA, 2005. ACM Press.

158

Using Evolutionary Annotations from Change Logs to
Enhance Program Comprehension

Daniel M German
Dept. of Computer Science

University of Victoria

dmg@uvic.ca

Peter C. Rigby
Dept. of Computer Science

University of Victoria

pcr@uvic.ca

Margaret-Anne Storey
Dept. of Computer Science

University of Victoria

mstorey@uvic.ca

ABSTRACT
Evolutionary annotations are descriptions of how source code evolves
over time. Typical source comments, given their static nature, are
usually inadequate for describing how a program has evolved over
time; instead, source code comments are typically a description of
what a program currently does. We propose the use of evolution-
ary annotations as a way of describing the rationale behind changes
applied to a given program (for example ”These lines were added
to ...”). Evolutionary annotations can assist a software developer in
the understanding of how a given portion of source code works by
showing him how the source has evolved into its current form.

In this paper we describe a method to automatically create evolu-
tionary annotations from change logs, defect tracking systems and
mailing lists. We describe the design of a prototype for Eclipse that
can filter and present these annotations alongside their correspond-
ing source code and in workbench views. We use Apache as a test
case to demonstrate the feasibility of this approach.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Documentation

Keywords
Software evolution, mining software repositories, evolutionary an-
notations, version control

1. INTRODUCTION
It is undeniable that the most desirable property of source code

is that it performs that task it is intended for, and it is also a well-
known problem that source code lacks proper software documen-
tation (documentation that describes how a system is implemented
including source code comments). While some developers argue

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

that source code should be self explanatory, it is widely acknowl-
edged that software documentation is an important source of infor-
mation that assists developers during comprehension and mainte-
nance [6]. The primary goal of software documentation is to de-
scribe what the system does currently, and how it is implemented
currently .

As a software project evolves, a wealth of information is created
(some automatically, some manually) that describes how a software
system is evolving. We have previously demonstrated that histori-
cal records can be used to successfully reconstruct how a software
system evolves [2]. Our hypothesis is that this information, com-
bined with software documentation, can improve comprehension
and maintenance too.

In this paper, we propose the concept of evolutionary annota-
tions, documentation that describes how a software system is evolv-
ing, and a method for their automatic retrieval from historical soft-
ware development records such as version control logs, mailing list
discussions, defect tracking databases. We also describe some of
the challenges of extracting this information and correlating it with
the source code. We conclude with a description of a prototype for
the Eclipse Java development environment 1 that displays evolu-
tionary annotations related to the source code.

2. EVOLUTIONARY ANNOTATIONS
System documentation evolves, whether it is internal or external

to the code. Ideally documentation should evolve in tandem with
the source code. One of the important goals behind software docu-
mentation is to explain what the current version of the source code
does. What it lacks typically is a record of how the source code
evolves, and the decisions that led to its current form.

We define evolutionary annotations (EAs) as documentation that
explains the change or evolution of a software system rather than
its current role. EAs reside in various places:

• Change logs. Files that describe what is changed at any given
point (sometimes this information is embedded as an ever-
growing comment at the top of the file). It typically contains
a timestamp and a brief description of the change.

• Configuration management. It can explain the entire prove-
nance of a change: who requested it, why, who implemented,
who approved it, etc.

• Version control system. It keeps track of how source code
changes: who performed the change, what was changed and
when. Its logs usually contain an explanation of the rationale
for the change. Sometimes version control systems are part

1See www.eclipse.org

159

of a configuration management system, but more frequently
version control systems exist on their own.

• Defect tracking system. It might explain the bug or feature
that the change fixed or implemented: who found it, who
fixed, test cases, explanation of the fix, etc.

• Mailing lists and newsgroups messages. Email and news-
groups postings that discuss or describe how the system evolves.
The scope of these messages might vary, as some might de-
scribe how the entire system is evolving, while others might
be very specific to a given change.

• Records of code reviews. The rationale behind a change
that results from a code review might be very useful in un-
derstanding why a given change was performed in a certain
manner.

• TODO tasks (such as the ones described in [7]). Following
their evolution could provide valuable information about how
changes are requested and who completes them.

• Comments in the source code itself. Some comments are
indeed a description of how the source has changed.

In some instances a change in documentation might trigger the
creation of an EA. For example the removal of a TODO task which
might, but not necessarily, correspond to the completion of a task;
or the removal of a source code comment that might imply a major
change in the source code around it (for instance, an old algorithm
is no longer used and the source code comment is no longer appli-
cable).

If documentation that explains what a program does is seen as
“vertical” (contained within a single file), evolutionary annotations
are then “horizontal” (span at least two versions of a file), i.e. they
are orthogonal and they complement each other. Figure 1 demon-
strates how evolutionary annotations explain how source code files
change between versions.

Bugzilla�
Entry

 if (IsTextFile(var36)) {
 if (StringtoFullPath(&scriptFileName,var36) != 0) {
 PrintError("Syntax error: Not a valid pathname");
 return(-1);
 }

Source code
and comments

 if (IsTextFile(var36)) {
 if (StringtoFullPath(&scriptFileName,var36) != 0) {
 PrintError("Syntax error: Not a valid pathname");
 return(-1);
 }

Source code

 if (IsTextFile(var36) && not tested) {
 return -1;
 }

Source code
and commentsChange

 if (IsTextFile(var36)) {
 if (StringtoFullPath(&scriptFileName,var36) != 0) {
 PrintError("Syntax error: Not a valid pathname");
 return(-1);
 }

Source code

 if (scriptFileName.name[0] == 0) {
 char *temp;
 ...
}

Source code
and commentsChange

Version i Version i+1Version i-1

Mail messages and
newsgroup postings

Discussion related to
the changes

ChangeLog

VC log

ChangeLog

VC log
Describe
Change

Describe
Change

Describe
Change

Bugzilla�
Entry

Figure 1: Evolutionary annotations are “horizontal” while
source code comments are vertical.

Evolutionary annotations, like any other type of historical infor-
mation, will grow as time passes by. It is necessary to present them
to the reader in such a way that they are meaningful. EAs need to
be filtered and ranked in such a way that only the most meaningful
are presented to the reader. The definition of “most meaningful”
might also change depending on the task at hand. A simple method
to filter EAs can be based on their attributes. EAs can have the
following inherent attributes:

• Type. This classification corresponds to the source of the an-
notation: emails, ChangeLogs, defect tracking, source code
comments, etc.

• Scope. Evolutionary annotations, like the source code itself,
have scope. Some describe changes at the global level (e.g.
one might explain why the architecture of a system changed)
while others might be at the line level (“this if statement was
added to fix bug number...”). In some cases, the scope of a
EA might not be related to a scope in a programming lan-
guage sense (i.e. a EA that relates a global variable with
some lines of code in several functions); thus, the annota-
tions of some EA might not have an equivalent source code
scope.

• Timestamp. When was the annotation created.

• Author. Who created it.

• Version/Revision. Indicates which version of the source code
the EA correspond to.

• Community/project defined. Evolutionary annotations can
be further refined with the use of keywords or other special
fields that describe them. They can be enhanced according
to the needs of the project. For example, developers can rank
them according to importance, or can add keywords that are
meaningful to their application domain. Ideally these refine-
ments will be defined and created in such a manner that they
improve query and visualization mechanisms.

• Type of change. EAs should also be labeled according to
the type of source code they document (such as defect fixes,
structural changes, new functionality, refactoring etc).

• Other EAs. Further annotations can be attached to a given
EA that might provide a more in-depth explanation of the
change.

Some of these attributes–such as author, timestamp and type–
are easy to compute. Others, however, are not that simple. It will
be difficult, for example, to automatically determine the scope of
a comment. One potential solution is to allow the developers to
further annotate EAs with their scope, either during their creation,
or when they are being explored.

Automatically ranking annotations according to their relevance
for the task the reader needs to complete, is an open problem and
we expect to conduct further research in this area. The notion of
decay should also be supported. As the code evolves, some, but not
all EAs will lose their importance. We believe it will be difficult
to automatically determine the rate at which a given EA should
decay. Any system that presents EAs to the user should be able to
take advantage of these properties in such a manner that the user
can order them and filter them to meet their information needs.

160

3. EXTRACTING AND CROSS-REFERENC-
ING EVOLUTIONARY ANNOTATIONS

One of the main challenges in the creation and maintenance of
any type of documentation is to convince developers to create it,
and then to keep it up to date.

EAs have an advantage over traditional documentation in that
they do not need require user interaction to be kept up-to-date. Like
any historical record, they need to be created when such an event
happens; after that they might never change again (except, as we
mentioned above, by adding extra annotations to them). Therefore
the challenge is to get developers to create them in the first place.

Some evolutionary annotations are created automatically as a re-
sult of a change. For instance, if several lines of code in two differ-
ent functions are committed at the same time, an evolutionary anno-
tation is created that links them to each other, and with their author.
This annotation can be further enhanced by its author by providing
an expressive version control log description. Many evolutionary
annotations are, therefore, created by developers as a result of their
daily activities.

Since open source communities generally interact in an asyn-
chronous, distributed manner, records of all changes and discus-
sions are captured and stored. These records serve as the raw data
for the creation of evolutionary annotations (EAs are the links be-
tween these records). In our research into the evolution of open
source projects we have found that developers of mature open source
projects value these records and ensure, often through policy, that
these records be maintained; they form what Cubranic calls the
“community memory” [1] of the project. We have observed that:

• ChangeLogs are usually updated with a change. The Free
Software Foundation requires all its projects to have a Change-
Log file. In those projects that have them, we have discov-
ered that they are almost always updated [3].

• Version Control logs tend to have large, meaningful explana-
tions. In the project Evolution, the average size of a log is
306 bytes, in Apache 1.3 it is 160 bytes, and in Postgresql it
is 160 bytes, to cite just a few.

• Email is seen as an important source of discussion about
the way software evolves. For example, the Apache HTTPd
server conducts code reviews on many of its patches (some
pre-commit and some after they have been committed). The
discussion is often lively with reviewers providing detailed
explanations as to why a certain approach is good or bad [5].
In contrast, version control logs and comments are shorter,
usually omitting discussion of less satisfactory solutions. Hav-
ing a link to this discussion will likely save the maintainer
many hours in code comprehension and avoids time wasted
to re-implementing known poor solutions. In the case of
Apache code review information is archived, but (to our knowl-
edge) it has not been cross-referenced or linked to the source
code. Without this link it is difficult to to know, for a partic-
ular function/file/line of code, what discussion has occurred.

• Defect tracking databases, such as Bugzilla, are frequently
found in large open source projects. They provide a valuable
source of information regarding defects (and their fixes) and
feature request.

Some data sources that have a well defined format, such as ver-
sion control logs and ChangeLogs, are easy to correlate to lines of
affected code. Correlating Bugzilla and source code is more dif-
ficult. It usually involves textual analysis of the description of the

version control log. For example in [3], we describe regular expres-
sions that were useful in the extraction of Bugzilla numbers from
CVS commit logs. Correlating email messages is even more diffi-
cult. For Apache, we have been successful in creating automated
and manual heuristics that help in the correlation of messages dis-
cussing code reviews [5]. For example, code reviews often involve
diffs that contain the version in the repository against which the diff
was made. However, general email discussions are much more dif-
ficult to correlate. Problems include determining the context of the
discussion, reconstructing message threads, and resolving names
to email addresses. We expect that different projects will require
variants of our heuristics and new heuristics to correlate email mes-
sages to source code.

4. INTEGRATING EVOLUTIONARY
ANNOTATIONS INTO ECLIPSE

The proposed architecture consists of a database that contains all
the evolutionary annotations that are correlated to the source code.
As development artifacts are changed (e.g., source code changes
are committed, email messages are sent, defects are reported, etc),
the database is updated. A web service links the database and
Eclipse. Eclipse requests annotations based on where the developer
is working (e.g., a method, a class, a set of files, a project) and up-
dates the user’s perspective. Eclipse provides a useful framework
for presenting, through views and gutter annotations, the EAs to
developers. The plug-in architecture of Eclipse allowed us to cre-
ate a prototype that integrates EAs into a environment that already
contains useful development tools and supports many programming
languages and hardware and software platforms.

The screenshot from the EA prototype is shown in Figure 2.
The screenshot is based on EAs related to the Apache HTTPd 1.3
source. By selecting the section of code that needs to be under-
stood, the related EAs are shown in the Eclipse EA view. In this
case a diff was also performed since evolution is often easier to
understand when one can see the changes between versions. The
oldest EA pertains to a bug reported by a non-core developer. The
next EA is an email that contains the review comments and votes
of two independent reviewers of the proposed patch. The next EA
is a subversion commit log explaining what has been changed. The
most recent EA is an email indicating that new problems have been
discovered in the code.

In Figure 2, the EAs have been filtered for a particular section of
code. The filters could be relaxed to include an entire file or project.
Gutter annotations (not shown in the screenshot) are used in a file
to indicate specific section of code that contain annotations. Global
EAs are indicated as markup on file and project icons. It is also
possible to filter EAs based on any of the attributes. For example, it
is possible to restrict EAs to a particular version, type (e.g., bugs),
and author. This second type of filtering is important because most
sections of the code will have at least a commit log associated with
them making the guttered annotations cluttered. We are also con-
sidering using more advanced filtering techniques, such as allowing
users to bookmark or tag multiple sections of code and then base
our EA sets on these selections. EAs could complement degree of
interest tools like Mylar [4]. Mylar hides files that are not related to
the current development task. EAs can use the same model to show
users how the code evolved to the current state, helping to inform
future changes.

5. FURTHER WORK
This paper describes a research project in progress. One funda-

mental question about EAs that needs to be addressed is how useful

161

Figure 2: Evolutionary annotations related to a section of highlighted source code.

would they be to assist during program comprehension and main-
tenance?

Their usefulness will depend, for a given project, on how accu-
rate they are. In other words, we first need methods to accurately
evaluate the quality and quantity of evolutionary annotations and
how well they can be cross-referenced to the source code they refer
to. We also need empirical studies that extract, study and evaluate
EAs for a variety of projects.

As with any other type of documentation, some EAs will be of
high quality, while others will provide very little insight. Some
projects will have a vast number, while others will have very few.
Furthermore, from the point of view of a given developer trying
to understand the evolution of a given part of the code, what re-
ally matters is the quality and number of the annotations to that
particular part of the system. Experiments intended to evaluate the
usefulness of EAs need to take these factors into account.

Tool support is also needed. It is necessary to create methods
and heuristics for the extraction and correlation of evolutionary an-
notations, in particular for email discussions. It is also necessary to
create methods to rank, filter and present evolutionary annotations
so they do not overwhelm the developer.

The ideas underlying evolutionary annotations pose many inter-
esting questions for future work and for discussion.

6. REFERENCES
[1] D. Cubranić, G. C. Murphy, J. Singer, and K. S. Booth.

Learning from project history: A case study for software
development. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work, pages 82–91, 2004.

[2] D. M. German. Using software trails to reconstruct the
evolution of software. Journal of Software Maintenance and
Evolution: Research and Practice, 16(6):367–384, 2004.

[3] D. M. German. An empirical study of fine-grained software
modifications. Journal of Empirical Software Engineering,
2005. Accepted for publication Sept 25, 2005, to appear in the
Special Issue of Best Papers of ICSM 2004.

[4] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest
model for ides. In AOSD ’05: Proceedings of the 4th
international conference on Aspect-oriented software
development, pages 159–168, New York, NY, USA, 2005.
ACM Press.

[5] P. Rigby and D. M. German. A preliminary examination of
code review processes in open source projects. Technical
Report DCS -305-IR, University of Victoria, 2006.

[6] E. Tryggeseth. Report from an Experiment: Impact of
Documentation on Maintenance. Empirical Software
Engineering, 2(2):201–207, 1997.

[7] A. T. T. Ying, J. L. Wright, and S. Abrams. Source code that
talks: an exploration of eclipse task comments and their
implication to repository mining. In MSR ’05: Proceedings of
the 2005 international workshop on Mining software
repositories, pages 1–5, New York, NY, USA, 2005. ACM
Press.

162

A Study of the Contributors of PostgreSQL

Daniel M. German
Software Engineering Group, Dept. of Computer Science

University of Victoria
dmg@uvic.ca

ABSTRACT
This report describes some characteristics of the development team
of PostgreSQL that were uncovered by analyzing the history of its
software artifacts as recorded by the project’s CVS repository.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Life Cycle, Programming Teams

General Terms
Management

Keywords
Software evolution, mining software repositories.

1. QUESTIONS ADDRESSED
Our goal was to answer the following questions:
1. Who are the contributors to PostgreSQL and what can we

know about the number of their contributions?
2. Has the team’s composition changed over the years?
3. Can we identify any patches that are submitted by persons

without CVS accounts?
4. Do they keep strong territoriality over the code base? In other

words, are most files modified by only one developer?
5. Do contributors have different roles? For instance, can iden-

tify people who program, create tests cases, document, etc?

2. INPUT DATA AND APPROACH
We used as the main source for our analysis the CVS repository

of the project. We proceeded to mine it twice. The first time was
Sept 9, 2004. During this stage we proceeded to materialize every
revision of every source code file (i.e. we recreated every version of
every source code file ever submitted to the repository). The second
time was Feb 21, 2005; this time we only retrieved the metadata of
the changes to the system. In both cases the first recorded change
was made on July 9, 1996. One important point to highlight is that
development of PostgreSQL started long before they started using
CVS, and therefore, we only have a fraction of the total history of
the project. For instance, Release 1.0 was published in 1995, and
some copyright notices in some files date back to 1983.

For the mining of the repository we used the framework provided
by softChange [2] (softChange uses PostgreSQL as its storage
backend). We proceeded to create some derived information:

Copyright is held by the author/owner.
MSR’06, May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

• We reconstructed atomic commits (in the rest of this paper
we will refer to them as Modification Records –MRs)

• We reconstructed every version of every source code file sub-
mitted to CVS from July 9, 1996 to Sept. 9,2004.

• We created various statistics for each version of a file, and
every MR, such as LOCSs, number of functions added and
removed in each revision/MR, whether the revision/MR in-
cluded only changes to the source code, etc.

• We have found that larger MRs in PostgreSQL tend to be
changes in comments or code reorganizations, and if they are
considered in any analysis they can add a significant amount
of noise (for instance, in PostgreSQL the largest commits
are reindentation of the source code –a task performed on a
regular basis–or the update of the copyright’s year) [1]. For
that reason we have selected a subset of MRs (which we call
codeMRs). codeMRs satisfy the following conditions: a)
they are committed to the main branch of development; b)
they contain at least one source file; and c) they contain at
most 25 files. We believe that codeMRs are more represen-
tative of programming effort compared to MRs, and, in gen-
eral, using codeMRs instead of MRs improves the quality
of any analysis.

3. ANSWERING THE QUESTIONS

3.1 Who are the contributors?
We identified 28 different contributors to PostgreSQL who have

a CVS account. Only 4 of them have contributed more than 5 per-
cent of MRs. The proportion of MRs per contributor is depicted in
figure 1. Like many other open source projects, most of the com-
mits are done by a handful of individuals.

3.2 Has the team composition changed over
the years?

Figure 2 shows, for any given year, the proportion of contribu-
tions of MRs for the top 10 contributors. Some observations can
be made: the majority of contributions are performed, in any given
year, by two persons (which we will call the core team); and one of
the early members of the core team (vadim) was replaced by (tgl)
between 1997 and 1998. Nonetheless, the team’s composition has
been very stable over the years.

3.3 Can we identify any patches that are sub-
mitted by persons without CVS accounts?

One problem faced with the analysis of the evolution of a soft-
ware system based on CVS metadata is the difficulty of identifying
contributions by those without a CVS account (these contributions
are commonly known as patches). We reviewed the logs of each of

163

 0

 10

 20

 30

 40

 50

 60

 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

P
ro

po
rt

io
n

of
 M

R
s

Year

bryanh
momjian

neilc
petere

scrappy
tgl

thomas
vadim

Figure 2: Proportion of contributors of MRs by year

Figure 1: Proportion of contributors of MRs

the 364 codeMRs momjian performed during 2005 trying to find
any indication of these patches. We were able to identify 110 MRs
(roughly 1/3 of the total) to be patches submitted by 46 different
individuals. We also found ample evidence of bug reporting by a
large number of individuals. It is important to note that the for-
mat in which these contributors are acknowledged is different from
other projects (at least in the experience of the author): the words
“patch” and “contributed” are rarely mentioned, and the email of
the developer is not included either. We also inspected some com-
mits by tgl to be patches, but they were significantly fewer; but tgl
committed a large number of MRs where he acknowledges people
who submitted bug reports, designs and other contributions.

3.4 Do they keep strong territoriality over the
code base?

A change to a file does not necessarily mean somebody has ex-
pertise on that file. This observation is best exemplified when the
source code of PostgreSQL is reindented (a process that is done
on a regular basis, usually before a release) or, at the beginning of
a new year, when the copyright statement at the top of each file
is changed. The person who reindents the file might not have any
idea of what the code being reindented does. For that reason we
decided to study changes to files in codeMRs. Furthermore, terri-
toriality might change over time, thus we concentrated in changes
performed during 2005. We proceeded to compute, for each pair

(contributor, directory):

T d
c =

revisions by contributor c in directory d

total revisions to directory d

During 2005, 173 directories were modified (by a total of 10 peo-
ple). We found that 123 of these directories had one developer
responsible for at least 70% of the changes (Td

c ≥ 0.7). In 81 of
these directories (primarily in the database engine) the responsible
was tgl (T d

tgl ≥ 0.7) . The next was momjian with 18 directories; it
should be taken into account that momjian is responsible for com-
mitting patches submitted by contributors without a CVS account
(as previously discussed) and therefore he might not have created
those modifications (but he probably reviewed them, nonetheless).

3.5 Do contributors have different roles?
We have already discussed that momjian is responsible for ap-

plying patches, and tgl is responsible for most of the source code.
Other observations are: petere has been responsible for commit-
ting most of the internationalization files (.po), while some CVS
account holders have taken care of translating PostgreSQL into
languages they know (for example alvherre, who has committed
Spanish translations, or dennis, Swedish).

4. CONCLUSIONS
At first we were surprised by how small and stable over the years

the core team of PostgreSQL has been. Its CVS repository shows
that, in the last years, only two persons have been responsible for
most of the source code. We needed to inspect the history of the
project in more detail, and were surprised to learn that there is a
very large number of contributors who send source code patches to
the project. This is an important lesson for anybody trying to in-
spect the history of projects, particularly when the analysis is done
automatically. In the end we learned that PostgreSQL has a large
and vibrant community who contributes bug reports and patches.

5. REFERENCES
[1] D. M. German. An empirical study of fine-grained software

modifications. In 20th IEEE International Conference on
Software Maintenance (ICSM’04), pages 316–325, Sept 2004.

[2] D. M. German, A. Hindle, and N. Jordan. Visualizing the
evolution of software using softChange. In Proceedings SEKE
2004 The 16th Internation Conference on Software
Engineering and Knowledge Engineering, pages 336–341,
June 2004.

164

Co-Change Visualization
Applied to PostgreSQL and ArgoUML∗

(MSR Challenge Report)

Dirk Beyer
EPFL, Switzerland

ABSTRACT
Co-change visualization is a method to recover the subsys-
tem structure of a software system from the version history,
based on common changes and visual clustering. This pa-
per presents the results of applying the tool CCVisu, which
implements co-change visualization, to the two open-source
software systems PostgreSQL and ArgoUML. The input
of the method is the co-change graph, which can be easily
extracted by CCVisu from a Cvs version repository. The
output is a graph layout that places software artifacts that
were often commonly changed at close positions, and arti-
facts that were rarely co-changed at distant positions. This
property of the layout is due to the clustering property of
the underlying energy model, which evaluates the quality
of a produced layout. The layout can be displayed on the
screen, or saved to a file in SVG or VRML format.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement
— Restructuring, reverse engineering, and reengineering

General Terms: Design

Keywords: Software visualization, software clustering,
software structure analysis, force-directed graph layout

1. METHOD
In reverse engineering and reengineering, we often want

to extract a description of the system structure from avail-
able resources. Even if a structure description (often ‘as-
designed’) is available, it can be useful to complement
it by an extracted description of the ‘as-build’ structure.
Co-change visualization is a method that extracts such a
description, and aims to help in reverse engineering and
re-engineering activities like understanding the structure of
the system, change impact and change propagation analysis,
coupling analysis, architecture and design quality analysis.
Approach and tool used. The approach of co-change vi-
sualization is introduced in [2], and implemented in the tool
CCVisu [1]. It requires as input the version history, which
is almost always available, and automatically produces a vi-
sualization that groups together components that were often
changed together, and separates independent components.
Input data. For the two example systems, we take as input
the version log information, as (in case of Cvs) obtained by

∗This research was supported in part by the MICS NCCR
of the SNSF.

Copyright is held by the author/owner.
MSR’06, May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

applying the command cvs log -Nb (only default branch,
ignore tags). We consider the whole development period
from project start to Feb. 8, 2006 (extraction date). From
this input, we extract the co-change graph on file level. The
nodes in the (bipartite, undirected) co-change graph are files
and commits. An edge between a file node f and a commit
node c exists if file f was changed by commit c. The table
below presents the characteristics of the graphs. For the
details of the method and related work we refer to [2, 1].

System Files Commits Changes Log file
PostgreSQL 4,125 20,500 88,468 17 MB
ArgoUML 10,142 10,137 57,091 16 MB

2. RESULTS AND EVALUATION
The commit nodes and the edges are omitted in the vi-

sualizations for readability. The file nodes were drawn in
different colors, to compare the grouping suggested by the
layout with an authoritative decomposition, according to
documentation. The area of a circle is proportional to the
number of changes of the file. Each layout was computed
within 5 min on a 1.7 GHz Pentium M laptop, using only 200
iterations of the minimizer. The layouts in SVG or VRML
format provide (interactively) the file names as annotation
and basic zoom features. The figures in this paper are anno-
tated with the names of the subsystems (gray boxes). The
layouts in SVG and VRML format, the Cvs log files, and the
co-change graphs in RSF, are available on the supplemen-
tary web page at http://mtc.epfl.ch/∼beyer/ccvisu msr.
PostgreSQL. In the authoritative decomposition we con-
sidered 12 subsystems of PostgreSQL, and assigned a color
to each subsystem: executor (red), optimizer (blue), parser
(cyan), storage (magenta), catalog/commands/nodes (yel-
low), access (dark cyan), port (olive-green), regression test
(brown), interfaces (light blue), include (light green), utili-
ties (light gray), and documentation (green).

We can use the colors to evaluate if CCVisu has posi-
tioned the 4,125 files in groups in agreement with the au-
thoritative decomposition. Figure 1 clearly separates the
main clusters of the documentation (top right, largest cir-
cle at bottom is TODO file), the interfaces for libpg (center
right) and ecpg (bottom right), and the regression test files
(top left) from the backend files (center left), and from the
include and utilities (center). To get more insights into the
backend files on the left (here not separated), we need to
‘zoom’ into this part by restricting the co-change graph to
the backend, and computing a new layout for this subgraph.

Figure 2 visualizes the backend only. The subsystems that
formed the large group on the left in Fig. 1 are now better

165

http://mtc.epfl.ch/~beyer/ccvisu_msr/

Figure 1: PostgreSQL

Figure 2: PostgreSQL — backend only

separated. The layout separates from the rest the executor,
port, and access subsystems (bottom). It puts the optimizer,
nodes, and parser into one group (right), but does not merge
the three groups, which makes sense according to the author-
itative decomposition. The commands, catalog, and storage
files (left) are not separated but also not merged. The gray
nodes blur the otherwise clear picture: they represent the
utility files, which are used by all subsystems, and therefore
they are placed correctly by the method. The three groups
containing files in every color at the top are three collections
of makefiles — since they necessarily change together, they
are placed together although they are assigned to different
subsystems in the authoritative decomposition.
ArgoUML. The authoritative decomposition divides the
files into 9 parts: old development files (uci in green, uci-gef
in brown), documentation (yellow), test files (blue), cogni-
tive (cyan), diagrams (magenta), UI (dark cyan), UML-UI
(red), and model (light blue). The files that could not be as-
signed to any subsystem are drawn in light gray (consisting
of utilities, makefiles, configuration files, etc.).

The placement of the 10,142 files of ArgoUML is shown
in Fig. 3. The old development branch is clearly separated
(top right). Also, the www documentation files are shown

Figure 3: ArgoUML

as several clusters (right side), and some implementation-
dependent parts of the documentation (e.g., cookbook, con-
fig) are placed close to the corresponding source files. Fur-
thermore, the test files (top left) are nicely separated from
the rest. The files for the UML-UI (almost completely) form
the red clusters at the bottom, and also the files of the ‘cog-
nitive’ subsystem are separated. The cluster with the most
files of the UI subsystem is the explorer, which is separated
from the rest on the very left (close to the manual cluster).

The diagrams and model files are spread over the pic-
ture. A restriction of the visualization to the source files, as
done for PostgreSQL, leads to a picture (not shown here)
where the diagrams subsystem is separated, but the model
subsystem does still not form a cluster because this sub-
system is responsible for interfacing and exchanging data.
For example, the largest circle (light blue) is the class Mod-
elFacade. The visualization allows the following interpreta-
tion: the subsystems for UML-UI, cognitive, diagrams, and
the explorer component of the UI subsystem are reasonably
loosely coupled, and the rest is dependent on many other
components (expected to be necessary for UI, models, parts
of diagrams). We omit a more detailed discussion for space.
Conclusion. The resulting visualization provides the soft-
ware engineer with valuable information, e.g., for reverse
engineering it reveals the subsystem structure, for program
understanding it illustrates which artifacts depend on each
other, and for quality assessment it can be used to highlight
unstable parts of the system. That the co-change graph is
indeed a good prediction model can be shown by comparing
two layouts that result from splitting the co-change data
into a (virtual) past and future. The method relates not
only source code files, but also, e.g., SQL query files, test
files, and documentation files, to program source code files.

3. REFERENCES
[1] D. Beyer. Co-change visualization. In Proc. ICSM’05,

Industrial and Tool volume, pages 89–92, 2005.

[2] D. Beyer and A. Noack. Clustering software artifacts
based on frequent common changes. In Proc. IWPC,
pages 259–268. IEEE, 2005.

166

Mining Software Repositories with CVSgrab
Lucian Voinea

Technische Universiteit Eindhoven
The Netherlands

l.voinea@tue.nl

Alexandru Telea
Technische Universiteit Eindhoven

The Netherlands
alext@win.tue.nl

ABSTRACT
In this paper we address the process and team analysis categories
of the MSR Mining Challenge 2006. We use our CVSgrab tool to
acquire the data and interactively visualize the evolution of
ArgoUML and PostgreSQL, in order to answer three relevant
questions. We conclude summarizing the strong and weak points
of using CVSgrab for mining large software repositories.

Categories and Subject Descriptors
D.2.7 [Software engineering]: Distribution, Maintenance, and
Enhancement – documentation, reengineering;

General Terms
Management, Measurement, Documentation

Keywords
Evolution visualization, Software visualization, CVS

1. INTRODUCTION
The MSR Mining Challenge brings together researchers and
practitioners in the field of software repository mining, and
stimulates them to compare their tools and approaches. To
establish a common ground for comparison, two benchmarking
datasets are proposed: the ArgoUML and PostgreSQL CVS
repositories. ArgoUML is an open source project with a history of
6 development years, 4452 evolving files, contributed by 37
authors. PostgreSQL is an open source project with a history of
10 development years, 2829 evolving files, contributed by 27
authors. We used our CVSgrab tool [1] from the Visual Code
Navigator toolset [2] to analyze the process and the team structure
of these projects. The process and findings are described below.

2. SETUP
CVSgrab [1] is a tool for visualizing the evolution of large
software projects. CVSgrab includes mechanisms to query CVS
repositories locally or over the Internet. File contents are retrieved
on demand and cached locally, which massively speeds up the
mining process. CVSgrab can detect and cluster files with similar
evolution patterns, using several evolution similarity metrics [1].
Unlike classical CVS clients such as WinCvs or TortoiseCVS,
CVSgrab provides extensive support for interactively showing
evolutions of huge projects on a single screen, with minimal
browsing. Figure 1 depicts the architectural pipeline of CVSgrab:

CVS
Repository

Cache

2D
visualization

CVSgrab

CVS
Input parser

Internet

Evolution
analyzer

Figure 1: CVSgrab architectural pipeline

CVSgrab uses a simple 2D layout (see Figures 2,3,4): Each file is
drawn as a horizontal strip, made of several segments. The x-axis
encodes time, so each segment corresponds to a given version of
its file. Color encodes version attributes, e.g. author, type, size,
release, presence of a given word in the version’s CVS comment,
etc. Atop of color, texture may be used to indicate the presence of
a specific attribute for a version. File strips can be sorted along
the y-axis in several ways, thereby addressing various user
questions.

3. RESEARCH QUESTIONS
We used CVSgrab to acquire, analyze and visualize the evolution
information for ArgoUML and PostgreSQL. We formulated a
number of relevant team and process related questions and tried to
answer them using CVSgrab’s interactive visual mechanisms:
Q1: What is / was the development process?
Assessing the development process is important for project and/or
process auditors. Usually, the assessment outcome is based on
developer interviews and not on the real situation. We propose
using CVSgrab to base such assessments on the real data in CVS.
We used CVSgrab to visually compare the development process
behind both ArgoUML and PostgreSQL (Figure 2). We sorted the
files in the increasing order of their creation time. We used color
to encode file type: In Figure 2 left, documentation files are
yellow (HTML) and light green (images) and Java sources are red.
In Figure 2 right, C sources are blue, C headers are light green,
test suites are red, and documentation files are green.

creation
time

Figure 2: Evolution of file type: ArgoUML (left), PostgreSQL
(right). Creation time increases from top to bottom.
We now easily see that the development of ArgoUML started with
some documentation files (yellow, light green), possibly
containing the system specification and/or design. Implementation
source files followed only later. For a significant period, i.e. more
than 1/3 of the development time, no new source files appear.
This suggests the system architecture was stable in this period.

Copyright is held by the author/owner(s).

MSR’06, May 22–23, 2006, Shanghai, China.

ACM 1-59593-085-X/06/0005.

167

Next, source and documentation files are alternatively added in
large chunks, suggesting a coarse iterative development process
with few architectural changes. In contrast, the development of
PostgreSQL starts directly with a set of C source files, followed
shortly after by a set of header files (light green). This suggests
the system, as present in CVS, was not developed from scratch,
but started atop of some previous project. However, the system
specification / design either does not exist, or it is not maintained:
There are just a few documentation files (green) and these appear
much later in the project. The system architecture appears to be
less stable, as header files containing interfaces and corresponding
implementation files are added throughout the entire project. The
set of committed files is frequently interrupted by test suites (red).
This suggests an iterative development process in which added
functionality is tested before implementing new one.
Q2: What are the main contributors and their responsibilities?
During the development and maintenance of large software
projects, new developers often join and/or leave the team. It is
very important that newcomers quickly get familiar with the rest
of the development team and their responsibilities. In Figure 3, we
used the same file layout as in Figure 2 to show the evolution of
the two projects. However, color encodes now the ID of the
developers, so Figure 3 shows the evolution of contributions.

major initial
contributions,
different
authors

major initial
contribution

Figure 3: Evolution of author contributions: ArgoUML (left),
PostgreSQL (right)
We can see that, both for ArgoUML and PostgreSQL, there is
only one author for each major initial contributions, i.e. areas with
a steep slope of the time curve. However, these contributions
might represent the work of more developers, initially committed
by one configuration manager. The evolution of PostgreSQL
reveals another interesting pattern: alternative contribution of two
developers, e.g. green and blue vertical stripes for the middle
period of evolution. The responsibilities of the two developers are
however different. We can see that the contributions of the ‘green’
author involve many files simultaneously, while the ‘blue’ author
commits fewer files, but more often. This suggests the ‘green’
author has rather the role of a configuration manager that applies
formatting changes to the entire code (e.g. indentation), while the
‘blue’ author affects the system functionality in small increments.
Q3: Where are located the development issues discovered and
solved during alpha testing of some given release?
To track errors during debugging, it is of paramount importance to
narrow down the location of the code introducing the fault. This
might not always coincide with the location where the program
crashes. Moreover, an error might be caused by the resolution of
another issue. In such situations, it is useful to easily identify the
code that changes from one system release to another and in the
same time addresses a given issue. In Figure 4, we used the same
file layout as in Figure 2 to show the evolution of ArgoUML.
Color encodes versions that belong to a given system release: light

green = VERSION_0_14_ALPHA_1, dark cyan = VERSION_0_14_F,
red = both releases, grey = none. Grainy texture shows versions
that contain a reference to the word “issue” in their associated
CVS comment file. We see that only a few files that have been
changed during the alpha testing of release VERSION_0_14 appear
to reference the word “issue”. This is shown as light green
horizontal segments followed by textured dark cyan ones. At close
inspection, we saw that all this code refers to ArgoUML’s parsing
mechanism.

selected region
of interest

zoomed-in view of selection

Figure 4: Identifying ArgoUML version changes between
release VERSION_0_14_ALPHA_1 and release VERSION_0_14_F
that contain the word “issue” in their commit comment. Inset
shows a zoomed-in region, for better insight.

4. DISCUSSION
We have briefly illustrated the use of the CVSgrab tool [1] for
process and team analysis of large software projects. We used as
input data the MSR Challenge 2006 projects: ArgoUML and
PostgreSQL. The presented use cases confirmed us that CVSgrab
has a very good scalability: It can give comprehensive evolution
overviews for projects of thousands of files and hundreds of
versions, thus meeting industry size requirements. CVSgrab can
easily answer questions that involve the formation of a large
uniform color pattern, e.g. Q1 and Q2 in this paper, or questions
involving comparison of a small number of colors, e.g. Q3.
Secondly, the tight integration of the on-demand, Internet-based
CVS data browsing, acquisition, and visualization in CVSgrab
massively simplified the process of getting quick overviews of
huge projects. Finally, CVSgrab can be easily extended to support
different scenarios, by adding different file sorting techniques,
attribute-to-color mappings, and file similarity metrics, yielding a
powerful CVS mining tool. A complete version of the CVSgrab
tool is available for download on the Visual Code Navigator home
page at: http://www.win.tue.nl/~lvoinea/VCN.html

References
[1] Voinea, L., Telea, A. CVSgrab: Mining the History of Large

Software Projects. Proc. EUROVIS 2006, ACM Press, 2006,
to appear.

[2] Lommerse G., Nossin F., Voinea S.L., Telea A.: The Visual
Code Navigator: An Interactive Toolset for Source Code
Investigation. Proc. IEEE InfoVis, IEEE Press, 2005, 24 – 31

168

Mining Additions of Method Calls in ArgoUML

Thomas Zimmermann1 Silvia Breu2 Christian Lindig1 Benjamin Livshits3

1 Dept. of Computer Science
Saarland University

Saarbrücken, Germany

{tz, cl}@st.cs.uni-sb.de

2 University of Cambridge
Computer Laboratory

Cambridge, UK

silvia@ieee.org

3 Dept. of Computer Science
Stanford University

Stanford, USA

livshits@cs.stanford.edu

ABSTRACT
In this paper we refine the classical co-change to the addition of
method calls. We use this concept to find usage patterns and to
identify cross-cutting concerns for ArgoUML.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—version control; D.2.9 [Management]: Software
configuration management

General Terms
Management, Measurement

1. INTRODUCTION
One of the most frequently used techniques for mining version
archives is co-change. We specialize this concept to the addition
of method calls:

Two method calls that are added together in the
same transaction, are related to each other.

We use the concept of co-additions for the following two tasks:

• Find usage patterns, such as “the methods containsNode
and containsEdge are frequently called together.”

• Identify cross-cutting concerns, such as “the first statement
of every method calls the info method to log the method
name.”

In Section 2 we will describe our input data and the tools we used;
we present our results for usage patterns in Section 3 and for cross-
cutting concerns in Section 4.

2. INPUT DATA AND TOOLS
We applied our mining techniques to the ArgoUML repository that
was supplied for the MSR challenge [4]. We restricted our analysis
to the src new directory that contains the actual source code of
ArgoUML. All data was collected with an extended version of the
eROSE plug-in [2] for the ECLIPSE environment. For mining, we
used SQL queries and the Xelopes data mining library [5].

To reconstruct transactions we use the sliding window approach
with a window size of 200 seconds. For each transaction we com-
pute the set of newly added method calls. For this we compare the

Copyright is held by the author/owner.
MSR’06, May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

Pattern Count

localize(2) addField(2) 57
localize(1) lookupIcon(1) 45
addCaption(4) addField(4) 43
addButton(1) lookupIcon(1) 41
localize(1) addField(2) 28
findFigsForMember(1) findType(1) 23
addModelEventListener(2) removeModelEventListener(2) 19
addModelEventListener(3) removeModelEventListener(3) 13
addFocusListener(1) addKeyListener(1) 12
hasMoreElements(0) nextElement(0) 12
error(2) debug(1) 11
addSeperator(0) addField(2) 10
info(1) isInfoEnabled(0) 10
max(2) isDisplayed(0) 9
containsNode(1) containsEdge(1) 8

Table 1: Usage patterns for ArgoUML.

total set of method calls from the actual and the previous transac-
tion. The total set of method calls is computed for each transaction
by traversing the abstract syntax trees of all affected files.

For a call expression c1().c2(). . . . cn() we only take the final
method call cn() into account. Since we only analyze one file at a
time, the full signature for method cn isn’t available. Instead, we
augment it with the number of parameters, as shown in Table 1. An-
alyzing single files rather than complete snapshots makes our pre-
processing cheap, as well as platform- and compiler-independent.

3. MINING USAGE PATTERNS
Our approach is based on an observation: Method calls that are
added to source code simultaneously often represent a pattern. To
identify such patterns, we performed frequent pattern mining on
the set of added method calls.

We focused our analysis on intra-procedural patterns: patterns
that occur within a single method. In terms of mining this means
that we do not use complete transactions as input but group transac-
tions by the method in which a call was added. Furthermore, we ig-
nored calls to frequently used JAVA methods, such as iterator,
hasNext, and toString, since patterns involving these meth-
ods are well-known.

Table 1 shows the patterns we mined, sorted by decreasing fre-
quency. Actual usage patterns are printed in boldface, thus the pre-
cision is 40%. Below we discuss a few examples.

• addModelEventListener,
removeModelEventListener
This pattern is used when elements are changed. First, the
listener is removed for the old element, then the element
is changed, and finally the listener is added for the new
element.

169

if (Model.getFacade().isAElement(target)) {
Model.getPump().removeModelEventListener

(this, target);
}
target = t;
if (Model.getFacade().isAElement(target)) {

Model.getPump().addModelEventListener
(this, target, "name");

}

• addFocusListener, addKeyListener
This pattern indicates a relationship between the focus and a
key listener: A user may enter text only to graphical elements
that are in focus.

• isInfoEnabled, info
Sometimes the return value of isInfoEnabled is checked
before the info method is called.

if (LOG.isInfoEnabled()) {
LOG.info("Removing feature " + feature);

}

• containsNode, containsEdge
These two methods are frequently called with the same argu-
ments to check whether an edge is valid; if not, an error is
logged.

if (!containsNode(destModelElement)
&& !containsEdge(destModelElement)) {

LOG.error("some message");
return false;

}

4. MINING CROSS-CUTTING CONCERNS
Programs can be modularized in only one way at a time. Aspect-
oriented programming (AOP) remedies this by factoring out as-
pects and weaving them back in a separate processing step. For
existing projects to benefit from AOP, these cross-cutting concerns
must be identified first. This task is called aspect mining.

Our hypothesis is that not all cross-cutting concerns exist from
the beginning, but some emerge over time. By analyzing where de-
velopers add code to a program, we can identify cross-cutting con-
cerns. Our approach searches transactions for sets of locations L
where at each location calls to a set of methods M have been added.
In other words: The calls to methods M are spread throughout
source code locations L. We call such a pair (M, L) an aspect can-
didate. In order to identify aspect candidates that actually cross-cut
a considerable part of a program, we ignore all candidates (M, L)
where |L| < 7 or |M | · |L| < 20. This means that each aspect can-
didate has to cross-cut at least 7 locations, and it has to comprise at
least 3 method calls that got added.

For ArgoUML we identified 230 aspect candidates in 73 out
of 6,286 transactions. Below we discuss a few examples.

Logging. We observed that the transaction with the log message
“Replaced deprecated log4j Category with Logger.” inserted
several calls to methods debug, error, and warn. The
last two methods turned out to be false positives. However,
for debug we found several cross-cutting calls that logged
the method names as shown in the following example:

public void doAction(int oldStep) {
LOG.debug("doAction " + oldStep);
...

}

This logging could have easily been realized with an aspect.

Illegal arguments. The transaction with the log message “Made
the methods look a little more alike. Collected the numer-
ous IllegalArgument calls in methods. [. . .]” inserted many
cross-cutting calls to illegalArgument or one of its
variants. These calls are always last in the method body:

public String getValueOfTag(Object handle) {
if (handle instanceof MTaggedValue) {
return ((MTaggedValue) handle).getValue();
}
return illegalArgumentString(handle);

}

In this case the method illegalArgumentString
throws an IllegalArgumentException and returns a
null object. Most of the 262 calls to illegalArgument
methods could have been realized as aspects.

Instance of a thing. The transaction with the log message “Re-
place every single instance of something instanceof MThing
with ModelFacade.isAThing(something)” inserted many
isA calls to the source code. isA methods look as follows:

public boolean isAClassifier(Object handle) {
return handle instanceof MClassifier;

}

There exist 111 methods of the above form; these methods
could have easily been generated with aspects.

In our previous work [1] we showed that mining cross-cutting con-
cerns from version archives has a high precision, for the top 20
aspect candidates of ECLIPSE we reached up to 90%. Measuring
recall requires knowing all aspect candidates, which is typically
only possible for a few small benchmark projects.

5. CONCLUSION
Co-addition of method calls identifies usage patterns; a usage pat-
tern may be actually a cross-cutting concern when all locations
where calls were added call the same set of locations. Both usage
pattern and cross-cutting concerns can be identified by mining ver-
sion archives, as demonstrated by the ones we found in ArgoUML.

Usage patterns and cross-cutting concerns have several benefits.
Mining usage patterns can locate defects in software and supports
program understanding. Knowing cross-cuttings concerns helps to
reduce maintenance effort and is the prerequisite for refactoring a
legacy system into an aspect-oriented design.

For a more detailed description of our mining approaches, we re-
fer to our publications on finding usage patterns [3] and identifying
cross-cutting concerns [1].

6. REFERENCES
[1] S. Breu and T. Zimmermann. Mining Aspects from History.

Submitted for publication.
[2] eROSE. Guiding Programmers in Eclipse.

http://www.st.cs.uni-sb.de/softevo/erose/.
[3] V. B. Livshits and T. Zimmermann. Dynamine: Finding

Common Error Patterns by Mining Software Revision
Histories. In Proc. Europ. Software Engineering Conf./ACM
SIGSOFT Symp. on the Foundations of Software Engineering,
2005.

[4] MSR. Mining Challenge 2006.
http://msr.uwaterloo.ca/challenge/.

[5] Prudsys AG. XELOPES Library.
http://www.prudsys.com/Produkte/Algorithmen/Xelopes/.

170

http://www.st.cs.uni-sb.de/softevo/erose/
http://msr.uwaterloo.ca/challenge/
http://www.prudsys.com/Produkte/Algorithmen/Xelopes/

Using Software Birthmarks to Identify
Similar Classes and Major Functionalities

Takeshi Kakimoto Akito Monden Yasutaka Kamei
Haruaki Tamada Masateru Tsunoda Ken-ichi Matsumoto

Nara Institute of Science and Technology
8916-5 Takayama Ikoma Nara Japan 630-0192

{takesi-k, akito-m, yasuta-k, harua-t, masate-t, matumoto}@is.naist.jp

ABSTRACT
Software birthmarks are unique and native characteristics of every
software component. Two components having similar birthmarks
indicate that they are similar in functionality, structure and im-
plementation. Questions addressed in this paper include: Which
are similar class files? Can they be gathered into one class file?
What are major functionalities among class files? To answer to
these questions, this paper analyzed the similarity of birthmarks
for all pairs of classes in ArgoUML, and visualized them using
Multi-Dimensional Scaling (MDS). As a result, three pairs of very
similar class files, which seem to be made by copy-and-paste
programming, were identified. Also, four major functionalities
were identified in the MDS space.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Product Metrics; K.6.3
[Management of Computing and Information Systems]: Soft-
ware Management – Software maintenance;

General Terms: Measurement, Experimentation

Keywords
software birthmark, multi-dimensional scaling

TARGET OSS PROJECT
ArgoUML (written in Java)

MINING AREA
- Change impact, propagation coupling analysis
- Architecture and design quality analysis

MINING QUESTIONS
The following two questions are addressed in this paper.
(1) Which are similar class files?
This question needs to be answered when one wants to refactor a
Java program. Similar class files are often refactored into one
class file to improve software maintainability. Also, when one
modifies a class file, he/she often needs to find similar class files
that need to be modified as well.
(2) What are major functionalities among class files?
This question needs to be answered when one joins a project and
tries to understand the mapping between class files and their func-
tionalities.

INPUT DATA
From 1,432 class files of ArgoUML release 0.20, 61 classes hav-
ing more than 30 lines of source code were chosen as an input
dataset.

1. APPROACH AND TOOLS USED
1.1 Birthmark
Java birthmarks[1] are unique and native characteristics of every
Java class files. Originally, birthmarks are used to detect the sto-
len (i.e. illegally copied) Java class files across two different pro-
jects. In this paper we use birthmarks to find similar class files in
a project to help maintenance activities.
We used a Java birthmark tool called jbirth1 to extract four types
of birthmarks from each class file: (1) constant values in field
variables (CVFV birthmark), (2) sequence of method calls (SMC
birthmark), (3) an inheritance structure (IS birthmark), and (4)
used classes (UC birthmark). Two class files having similar
birthmarks indicate that they are similar in functionality, structure
and implementation.
To compute the similarity between two class files p and q in terms
of their birthmarks, we used the following definition [1].
Definition (Similarity) Let f(p) = (p1, …, pn) and f(q) = (q1, …,
qn) be birthmarks with length n, extracted from class files p and q.
Let s be the number of pairs (pi, qi)’s such that pi = qi (1 ≤ i ≤ n).
Then, similarity between f(p) and f(q) is defined by: s/n·100.

1.2 Multi Dimensional Scaling (MDS)
After computing the similarity of birthmarks for all pairs of 61
class files, we used MDS to visualize their relationships. Major
functionalities can be identified as clusters in the MDS space. We
used SPSS as a MDS tool.

1 http://se.naist.jp/jbirth/

Table 1. Pair of classes having high similarity birthmarks.

Class pairs simi-
larity

uml.ui.behavior.collaborations.PropPanelCollaboration
uml.ui.behavior.use_cases.PropPanelUseCase 96.09

uml.ui.behavior.collaborations.PropPanelMessage
uml.ui.behavior.state_machines.PropPanelTransition 93.91

uml.ui.foundation.core.PropPanelClass
uml.ui.foundation.core.PropPanelAssociationClass 92.78

Copyright is held by the author/owner(s).
MSR'06, May 22-23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

171

2. RESULTS AND INTERPRETATIONS
2.1 Finding Similar Class Files
Table 1 shows pairs of classes that had high-similarity birthmarks
(similarity > 0.9). As we investigated their source code, each pair
had very similar functionality, structure and implementation. It
can be considered that these pairs were made by copy-and-paste
programming, and can be refactored so as to reduce the duplicated
code.

2.2 Finding Major Functionalities
Figure 1 shows relationship among classes in the MDS space.
Classes having similar birthmarks are located in near space, and
classes having dissimilar birthmarks are located far apart. From
Figure 1, we could identify the following four major functional-
ities.

• Most of classes at the lower right part (“diagram” circle) were
related to diagram (e.g. FigAssociation class, FigUseCase
class.)

• Classes at the lower left part (“PropPanel” circle) were related
to PropPanel (e.g. PropPanelAttribute class, PropPanelOpera-
tion class.)

• Classes related to WizStep were in “WizStep” circle (e.g.
WizStepConfirm class.)

• Classes related to SettingsTab were in “SettingsTab” circle
(e.g. SettingsTabEnvironment class.)

All these functionalities were identified by finding clusters and
similar file names in the MDS space. We believe that using birth-
marks together with MDS is useful to understand the relations
between class files and to roughly recognize their functionalities.

3. CONCLUSIONS
This paper analyzed the similarity of birthmarks for all pairs of
classes in ArgoUML, and visualized them using MDS. As a result,
three pairs of very similar class files were identified. Also, four
major functionalities (diagram, PropPanel, WizStep and Setting-
sTab) were identified in the MDS space.

4. ACKNOWLEDGMENTS
This work is supported by the EASE (Empirical Approach to
Software Engineering) project of the Comprehensive Develop-
ment of e-Society Foundation Software program of the Ministry
of Education, Culture, Sports, Science and Technology of Japan.

5. REFERENCES
[1] Tamada, H., Nakamura, M., Monden, A., Matsumoto, K.

Java birthmark –Detecting the software theft. IEICE Trans-
actions on Information and Systems, E88-D, 9 (Sept. 2005),
2148-2158

-2 -1 0 1 2

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

uml.diagram.sequence.ui .FigClassi fierRole

uml .diagram.ui .FigAssociation

cognitive.ui .D ismissToDoItemDialog

cognitive.ui.W izStepCue

cognitive.ui.W izStepConfi rm

cognitive.ui .W izStepChoice

cognitive.ui .AddToDoItemDialog

cognitive.ui .W izStepTextField

cognitive.ui .ToDoPane

uml.generator.ParserD isplay

uml.ui .behavior.state_ machines.PropPanelTransition

persistence.PGM LParser

uml.ui .TabTaggedValues

uml.ui .SourcePathTableM odeluml .ui.UM LAddD ialog

uml .ui .TabDocumentation

uml.diagram.state.ui.UM LStateDiagram

uml .generator.ui.ClassGenerationD ialog

cognitive.ResolvedCritic

cognitive.ToDoI tem

uml .ui.behavior.common_ behavior.PopupM enuNewAction

uml .ui .behavior.common_ behavior.PropPanelReception

uml .cognitive.cri tics. Init

uml .reveng. java.JavaLexer

ui .explorer.ExplorerPopup

uml.diagram.col laboration.ui.FigClassi fierRole

uml.ui .behavior.use_ cases.PropPanelExtend

uml .ui .foundation.core.PropPanelGeneralization

uml .ui .foundation.core.PropPanelAssociationClass

ui .A boutBox

ui .SettingsTabL ayout ui.SettingsTabEnvironment

ui.TabResults

ui.FindD ialog

ui.ProjectBrowser

ui .SettingsTabPreferences

ui .DetailsPane

ui.SettingsTabUser

ui .SettingsTabAppearance

uml .diagram.static_ structure.ui .FigCommentPropPanel

WizStep

SettingsTab

diagram

Figure 1. Relationship among class files in MDS space based on similarity of birthmark.

172

How Long Did It Take To Fix Bugs?
Sunghun Kim, E. James Whitehead, Jr.

University of California,
Santa Cruz, CA, USA

{hunkim, ejw}@cs.ucsc.edu

ABSTRACT
The number of bugs (or fixes) is a common factor used to measure
the quality of software and assist bug related analysis. For
example, if software files have many bugs, they may be unstable.
In comparison, the bug-fix time—the time to fix a bug after the
bug was introduced—is neglected. We believe that the bug-fix
time is an important factor for bug related analysis, such as
measuring software quality. For example, if bugs in a file take a
relatively long time to be fixed, the file may have some structural
problems that make it difficult to make changes. In this report, we
compute the bug-fix time of files in ArgoUML and PostgreSQL
by identifying when bugs are introduced and when the bugs are
fixed. This report includes bug-fix time statistics such as average
bug-fix time, and distributions of bug-fix time. We also list the
top 20 bug-fix time files of two projects.
Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Restructuring, reverse engineering, and
reengineering, D.2.8 [Software Engineering]: Metrics – Product
metrics, K.6.3 [Management of Computing and Information
Systems]: Software Management – Software maintenance.

General Terms
Management, Measurement

1. INTRODUCTION
The number of bugs is commonly used to measure software
quality. For example, if a file has 100 cumulative bugs over its
development history, we may assume the file is more instable than
one that had no bugs in its history. We believe that both bug
counts and bug-fix times are important factors for bug related
analysis. We can determine the bug-fix time by identifying bug-
introducing changes (fix-inducing changes [5]) and corresponding
bug fixes. The bug-fix time can be used to measure software
quality. For example, if bugs in a software file take a long time to
be fixed, it may indicate the file is instable or we need to pay
more attention to the file.

We compute the bug-fix time of two open source projects,
ArgoUML (period 1/2002 - 3/2003) and PostgreSQL (period
07/1996-11/2000), and report bug-fix time statistics. Our goal is
to demonstrate how bug-fix time can be used as a factor for bug
related analysis.

2. EXPERIMENT SETUP
To compute bug-fix time, we need to identify bug-introducing
changes and their corresponding fixes, and then measure the time
between them. For example, suppose a bug was introduced (in file
‘foo’) at revision 3 and it was fixed at revision 9 as shown in
Figure 1. We compute the bug-fix time by subtracting the commit
time of revision 3 from that of revision 9.

Figure 1. Bug-fix time example.
We first extract change histories of the two projects using the
Kenyon infrastructure [1]. We next identify bug fixes by mining
change logs. There are two ways to identify a bug-fix: searching
for keywords such as "Fixed" or "Bug" [4] and searching for
references to bug reports like “#42233” [2, 3, 5]. We use the
keyword-based change log search to identify bug fixes. We
identify bug-introducing changes by applying the fix-inducing
change identification algorithms described in [5]. We then obtain
the commit time of the identified bug-introducing changes and
their corresponding bug fixes from project histories. From the
commit times, we compute each bug-fix time and the average
bug-fix time of each file.

3. BUG-FIX TIME
In this section we report bug-fix time statistics of two projects.

3.1 Bug Numbers and Fix Time
We show the distribution of bug counts for each bug-fix time in
Figure 2 and Figure 3. Bug fixes times in buggy files range from
100-200 days (the spikes in Figure 2 and Figure 3).

Figure 2. Distributions of bug counts by bug-fix time of
ArgoUML.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MSR ’06, May 22-23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

173

Table 1. Top 20 files with greatest bug-fix times

Rank ArgoUML Files
Bug fix

time
(days)

Bug
count PostgreSQL Files

Bu fix
time

(days)

Bug
count

1 argouml/src_new/org/argouml/uml/ui/UMLInitialValueComboBox.java 332 9 pgsql/src/backend/commands/define.c 504 19
2 argouml/src_new/org/argouml/uml/ui/UMLAttributesListModel.java 328 6 pgsql/src/backend/access/rtree/rtree.c 482 14
3 argouml/src_new/org/argouml/ui/NavigatorConfigDialog.java 324 9 pgsql/src/backend/utils/hash/dynahash.c 474 17
4 argouml/src_new/org/argouml/kernel/ProjectMember.java 320 7 pgsql/src/backend/utils/cache/inval.c 472 16
5 argouml/src_new/org/argouml/uml/ui/UMLTaggedBooleanProperty.java 318 7 pgsql/src/include/storage/bufpage.h 450 14
6 argouml/src_new/org/argouml/uml/ui/ActionSaveGraphics.java 317 6 pgsql/src/backend/utils/cache/relcache.c 444 84
7 argouml/src_new/org/argouml/uml/ui/UMLMultiplicityComboBox.java 317 6 pgsql/src/backend/catalog/pg_proc.c 425 18
8 argouml/src_new/org/argouml/uml/cognitive/critics/WizAssocComposite.java 315 6 pgsql/src/backend/optimizer/path/allpaths.c 422 37
9 argouml/src_new/org/argouml/ui/FindDialog.java 312 7 pgsql/src/backend/executor/nodeMergejoin.c 419 17

10 argouml/src_new/org/argouml/uml/DocumentationManager.java 312 15 pgsql/src/backend/utils/fmgr/dfmgr.c 408 17
11 argouml/src_new/org/argouml/uml/ui/ActionNew.java 310 12 pgsql/src/backend/commands/trigger.c 408 25
12 argouml/src_new/org/argouml/cognitive/ui/ToDoPerspective.java 306 6 pgsql/src/backend/utils/cache/catcache.c 407 32
13 argouml/modules/php/src/org/argouml/language/php/generator/GeneratorPHP.java 305 11 pgsql/src/backend/utils/init/postinit.c 399 46
14 argouml/src_new/org/argouml/uml/cognitive/critics/CrNameConflict.java 305 6 pgsql/src/backend/executor/nodeHash.c 393 19
15 argouml/src_new/org/argouml/uml/ui/UMLComboBoxEntry.java 304 6 pgsql/src/backend/executor/nodeAgg.c 391 53
16 argouml/src_new/org/argouml/cognitive/critics/ui/CriticBrowserDialog.java 304 8 pgsql/src/backend/rewrite/rewriteDefine.c 385 29
17 argouml/src_new/org/argouml/uml/ui/ActionAddOperation.java 292 15 pgsql/src/backend/access/gist/gist.c 384 19
18 argouml/src_new/org/argouml/uml/ui/ActionDeleteFromDiagram.java 289 10 pgsql/src/backend/nodes/readfuncs.c 382 60
19 argouml/src_new/org/argouml/uml/ui/ActionAddTopLevelPackage.java 289 6 pgsql/src/backend/catalog/pg_type.c 376 22
20 argouml/src_new/org/argouml/language/ui/SettingsTabNotation.java 287 15 pgsql/src/backend/commands/rename.c 376 24

Figure 3. Distributions of bug counts per bug-fix time of
PostgreSQL.

Figure 4. Bug-fix time (days) of the two projects. Two boxes
indicate 50% of bug-fix time (25% to 75% quartile). The middle
line in boxes indicates the median value of bug-fix time.

Figure 4 shows the bug-fix time of the two projects using box
plots. They show that fixing 50% of the bugs requires appx. 100
to 300 days (the two boxes in Figure 4). The median bug-fix time
is about 200 days.

3.2 Number and Bug-fix Time
Table 1 lists the top 20 files with greatest bug-fix times, whose
bug counts are greater than average. The listed files may need
attention to determine why bug fixes take such a long time and
may need to be refactored to permit faster bug fixes in the future .

4. CONCLUSION
By mining software histories of two projects, ArgoUML and
PostgreSQL, we computed and analyzed the bug-fix time of each
file. We believe that bug-fix time is useful, and should be widely
used for bug related analysis.

5. REFERENCES
[1] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey,

"Facilitating Software Evolution with Kenyon," Proc. of
the 2005 European Software Engineering Conference and
2005 Foundations of Software Engineering (ESEC/FSE
2005), Lisbon, Portugal, pp. 177-186, 2005.

[2] D. Cubranic and G. C. Murphy, "Hipikat: Recommending
pertinent software development artifacts," Proc. of 25th
International Conference on Software Engineering (ICSE),
Portland, Oregon, pp. 408-418, 2003.

[3] M. Fischer, M. Pinzger, and H. Gall, "Populating a
Release History Database from Version Control and Bug
Tracking Systems," Proc. of 2003 Int'l Conference on
Software Maintenance (ICSM'03), pp. 23-32, 2003.

[4] A. Mockus and L. G. Votta, "Identifying Reasons for
Software Changes Using Historic Databases," Proc. of
International Conference on Software Maintenance (ICSM
2000), San Jose, California, USA, pp. 120-130, 2000.

[5] J. Sliwerski, T. Zimmermann, and A. Zeller, "When Do
Changes Induce Fixes?" Proc. of Int'l Workshop on
Mining Software Repositories (MSR 2005), Saint Louis,
Missouri, USA, pp. 24-28, 2005.

174

Mining Refactorings in ARGOUML

Peter Weißgerber, Stephan Diehl
University of Trier

Computer Science Department
54286 Trier, Germany

weissger@uni-trier.de, diehl@acm.org

Carsten Görg
�

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332, USA

goerg@cc.gatech.edu

ABSTRACT
In this paper we combine the results of our refactoring reconstruc-
tion technique with bug, mail and release information to perform
process and bug analyses of the ARGOUML CVS archive.

Categories and Subject Descriptors: D.2.8[Software Engineer-
ing]:Metrics; D.2.5[Software Engineering]:Testing and Debugging

General Terms: Algorithms, Management, Measurement.

Keywords: Refactoring, mails, bugs, evolution, re-engineering.

1. INTRODUCTION
In this study we mine the CVS archive of ARGOUML for refac-

torings that have been performed during the development and evo-
lution of ARGOUML. We relate the refactorings of each day to the
number of overall changes on that day to detect both phases with
many and phases with almost no refactorings. We look especially
at the phases before major release dates, because this may help the
project manager in planning pre-release phases, or to plan release
dates ahead.

To see if refactorings in ARGOUML have an effect on the occur-
rence of new bugs and on communication between the developers,
we relate the refactorings to bug reports in ISSUEZILLA respec-
tively to mails on the developer mailing list. If the error rate would
increase with the refactoring ratio, the project manager would have
to enforce the use of automated refactoring tools, or the used refac-
toring tools or methods may be poor.

Finally, we examine if there are incomplete refactorings which
could possibly lead to errors. Mining changes for such incomplete
refactorings can uncover bugs that have been introduced long ago.

2. MINING REFACTORINGS IN ARGOUML

2.1 Computing the Refactoring Ratio
In [1] we introduced our technique to reconstruct refactorings

from software archives such as CVS. For each day, we determine

�The author was supported by a fellowship within the Postdoc-
Program of the German Academic Exchange Service (DAAD).

Copyright is held by the author/owner.
MSR’06, May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

which blocks (fields, methods in a class) have been changed and
which of these are affected by refactorings. Thus we get values for
the following metrics:

Normalized number of changed blocks (per day):
���� �

����
������

where ������ � ���������� day in project’s lifetime�

Number of refactorings per changed block (per day):
���� �

����
����

where���� is the number of non-overlapping,
disambiguated refactoring candidates for day �

2.2 Computing Bug and Mail Ratios
To determine if days with a high refactoring ratio result in fewer

errors than other days, we look at the number of bugs filed per day
in the ISSUEZILLA system of ARGOUML. As developers usu-
ally do not detect errors immediately after the program change that
caused them, we compute the number ��� of all new defects filed
within the next five days (which roughly approximates a working
week). For each day we relate this value to the number of changes:

Normalized number of bugs per changed block:
���� �

����
����

�������

where ������ � ���������� day in project’s lifetime�

Additionally, we are interested in whether refactorings have an
effect on the amount of communication between the developers.
Therefore, we consider the development mailing list of ARGO-
UML and count for each day the number ��� of archived mails.
We relate this number to the number of changes as follows:

Normalized number of mails per changed block:
���� �

��	�

����
���	���

where ��	��� � ������	��� day in project’s lifetime�

3. ARGOUML RESULTS

3.1 Process Analysis: The Pre-Release Phase
Figure 1 shows the time periods before and after the four release

dates of the stable series of ARGOUML from 2002 until 2005. In
all cases, we see the same pattern:

� Before the release dates, there seem to be testing phases where
only few changes have been done at all, but many new bug
reports have been opened.

� In each case after the testing phase and immediately before
the release, changes with high refactoring ratio have been
performed.

175

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
0

1
.0

9
.2

0
0

2

0
8

.0
9

.2
0

0
2

1
5

.0
9

.2
0

0
2

2
2

.0
9

.2
0

0
2

2
9

.0
9

.2
0

0
2

0
6

.1
0

.2
0

0
2

1
3

.1
0

.2
0

0
2

2
0

.1
0

.2
0

0
2

2
7

.1
0

.2
0

0
2

%CB %RB %BB

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0
1
.0

7
.2

0
0
3

0
8
.0

7
.2

0
0
3

1
5
.0

7
.2

0
0
3

2
2
.0

7
.2

0
0
3

2
9
.0

7
.2

0
0
3

0
5
.0

8
.2

0
0
3

1
2
.0

8
.2

0
0
3

1
9
.0

8
.2

0
0
3

2
6
.0

8
.2

0
0
3

%CB %RB %BB

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0
1
.0

6
.2

0
0
4

0
8
.0

6
.2

0
0
4

1
5
.0

6
.2

0
0
4

2
2
.0

6
.2

0
0
4

2
9
.0

6
.2

0
0
4

0
6
.0

7
.2

0
0
4

1
3
.0

7
.2

0
0
4

2
0
.0

7
.2

0
0
4

2
7
.0

7
.2

0
0
4

%CB %RB %BB

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

3
1

.0
3

.2
0

0
5

0
7

.0
4

.2
0

0
5

1
4

.0
4

.2
0

0
5

2
1

.0
4

.2
0

0
5

2
8

.0
4

.2
0

0
5

0
5

.0
5

.2
0

0
5

1
2

.0
5

.2
0

0
5

1
9

.0
5

.2
0

0
5

2
6

.0
5

.2
0

0
5

%CB %RB %BB

Release 0.12

9.10.2002
Release 0.14

17.8.2003
Release 0.16

19.7.2004

Release 0.18

29.4.2005

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
0

1
.0

9
.2

0
0

2

0
8

.0
9

.2
0

0
2

1
5

.0
9

.2
0

0
2

2
2

.0
9

.2
0

0
2

2
9

.0
9

.2
0

0
2

0
6

.1
0

.2
0

0
2

1
3

.1
0

.2
0

0
2

2
0

.1
0

.2
0

0
2

2
7

.1
0

.2
0

0
2

%CB %RB %BB

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0
1
.0

7
.2

0
0
3

0
8
.0

7
.2

0
0
3

1
5
.0

7
.2

0
0
3

2
2
.0

7
.2

0
0
3

2
9
.0

7
.2

0
0
3

0
5
.0

8
.2

0
0
3

1
2
.0

8
.2

0
0
3

1
9
.0

8
.2

0
0
3

2
6
.0

8
.2

0
0
3

%CB %RB %BB

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0
1
.0

6
.2

0
0
4

0
8
.0

6
.2

0
0
4

1
5
.0

6
.2

0
0
4

2
2
.0

6
.2

0
0
4

2
9
.0

6
.2

0
0
4

0
6
.0

7
.2

0
0
4

1
3
.0

7
.2

0
0
4

2
0
.0

7
.2

0
0
4

2
7
.0

7
.2

0
0
4

%CB %RB %BB

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

3
1

.0
3

.2
0

0
5

0
7

.0
4

.2
0

0
5

1
4

.0
4

.2
0

0
5

2
1

.0
4

.2
0

0
5

2
8

.0
4

.2
0

0
5

0
5

.0
5

.2
0

0
5

1
2

.0
5

.2
0

0
5

1
9

.0
5

.2
0

0
5

2
6

.0
5

.2
0

0
5

%CB %RB %BB

Release 0.12

9.10.2002
Release 0.14

17.8.2003
Release 0.16

19.7.2004

Release 0.18

29.4.2005

Figure 1: Relative number of changes, refactorings and bugs before major releases.

3.2 Bug Analysis: Correlation between Refac-
torings, Mails, and Bugs

Figure 2 shows the values of the normalized number of bugs
per day ����, as well as the normalized number of mails per
day ���� compared to the refactoring ratio per day. While the
Spearman correlation between ��� and ��� is only about ���,
it stands out that after days with a high refactoring ratio only few
bug reports have been opened in the bug tracking system. The same
holds for mails: When the refactoring ratio is high, few mails have
been written. However, we are aware that these correlations could
be accidental or caused by other factors like feature freezes that we
did not yet take into account.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1

%RB (Number of refactorings per changed block)

%
B

B
(N

o
rm

a
li
z
e

d
n

u
m

b
e

r
o

f
b

u
g

s
p

e
r

b
lo

c
k

w
it
h

in
n

e
x
t
5

d
a

y
s
)

%
M

B
(N

o
rm

a
li
z
e

d
n

u
m

b
e

r
o

f
m

a
il
s

p
e

r
b

lo
c
k
) %BB

%MB

Figure 2: Few bug reports and mails after days with high refac-
toring ratio.

3.3 Bug Analysis: Incomplete Refactorings
Refactoring reconstruction can also be used to detect incomplete,

and thus erroneous refactorings [2]. In these cases, parameters have
been added to or removed from methods, but the developer did
not change the corresponding methods in super-, sub-, or sibling
classes accordingly. In ARGOUML we found 33 transactions con-
taining such incomplete refactoring candidates between Jan 2003
and Dec 2005.

Figure 3 shows a candidate for a possibly incomplete refactor-
ing: the sibling classes ActionSaveGraphics and Action-

Figure 3: Missing Remove Parameter refactoring.

SaveProjectAs both contained the method trySave(bool).
The refactoring RemoveParamter was applied only to the method
in the class ActionSaveGraphics and possibly it also should
be applied to the method in the class ActionSaveProjectAs.

Figure 4: Missing Add Parameter refactoring.

Figure 4 shows the application of an AddParameter refactoring
to the method modelChanged() in the class FigSeqStimulus.
The refactoring has not been applied to the method modelChan-
ged() in its superclass FigNodeModelElement. However,
some transactions later the AddParameter refactoring has been ap-
plied to the method modelChanged() in the superclass and also
to methods in five other subclasses of FigNodeModelElement.
Apparently the refactoring was incomplete in the beginning.

Acknowledgments. Michael Stockman kindly provided the bug data for
ARGOUML.

4. REFERENCES
[1] C. Görg and P. Weißgerber. Detecting and visualizing refactorings

from software archives. In Proceedings of International Workshop on
Program Comprehension (IWPC05), St. Louis, Missouri, USA, May
2005.

[2] C. Görg and P. Weißgerber. Error detection by refactoring
reconstruction. In Proceedings of International Workshop on Mining
Software Repositories (MSR05), St. Louis, Missouri, USA, May 2005.

176

Applying the Evolution Radar to PostgreSQL

Marco D’Ambros, Michele Lanza
Faculty of Informatics

University of Lugano, Switzerland

{marco.dambros, michele.lanza}@lu.unisi.ch

Categories and Subject Descriptors: D.2.7 [Software Engineer-
ing]: Maintenance, Version Control, Re-engineering, Reverse En-
gineering

General Terms: Measurements, Design.

Keywords: Evolution, Logical Coupling, Visualization.

1. GOALS
In this report we describe the results of the application of our

approach, the Evolution Radar [2], on the PostgreSQL system. The
mining questions we want to answer are:

1. What are the relationships among the system modules in terms
of logical coupling? How are these relationships character-
ized? Which are the main responsibles for the logical cou-
plings, i.e., the best candidates for starting a reengineering
process?

2. How have these relationships evolved over time? When have
refactorings been applied on the modules? In which phase is
the system in the current version?

2. INPUT DATA
To analyze the target system, i.e., PostgreSQL, we use its whole

history, as recorded by the CVS version control system, stored in
a database called Release History Database (RHDB) [1, 3]. The
database populating process, performed in batch mode, consists
in (i) doing a checkout of the system, parsing it and storing the
structure information in the database, (ii) parsing the CVS logs and
storing all the commit-related information. The RHDB includes
information about all the files in the system,i.e., source code, doc-
umentation, make-files, etc. For our analysis we consider only the
source code data, i.e.,.c and .h files (since PostgreSQL is writ-
ten in c). We decompose the system using the top-most directories
in the src directory tree, i.e., we define a module as all the files
belonging to a directory subtree.

Copyright is held by the author/owner.
MSR’06, May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

3. THE EVOLUTION RADAR APPROACH
The Evolution Radar (see Figure 1) visualizes the logical cou-

pling of one module with the others (see [2] for details). The mod-
ule in focus is placed in the middle of a pie chart, where each sector
represents one of the other modules. The size of each sector depicts
the size of each module in terms of number of files. The modules
are sorted according to this size metric.

The files of each of those modules are represented as circles and
placed (and colored) according to the logical coupling they have
with the module placed in the center. The closer the files are to the
center (the hotter, from blue to red, the color is), the more coupled
they are.

Given a module M , a file f , and a time interval (t1, t2), we
define the logical coupling between the two as:

LC(M, f, t1, t2) = max
fi∈M

˘
sc(fi, f, t1, t2)

¯
(1)

where sc(fi, f, t1, t2) is the number of shared commits (performed
at the same time with a tolerance of 200 seconds) between fi and
f during the time interval (t1, t2)

1.

4. RESULTS
We consider the three biggest modules with respect to the num-

ber of files: backend (673 files), include (394 files) and interfaces
(84 files). For each module we build four Evolution Radars (using
the module as the center of the radar) corresponding to the last four
years of development of the module. Then we study the relation-
ships of the target module with the five other biggest modules in
the system with respect to the logical coupling information. For
this study we both analyze the view and compute some measures
characterizing the evolution of the couplings. In details we define:

• Strength (s): The total value of the logical coupling between
the target module Mt and another module M (a slice). It is
equal to the sum of the logical coupling of all the files of M
with Mt.

• Distribution (d). The percentage of files involved in the log-
ical coupling. It is equal to the number of files of M having a
logical coupling with Mt divided by the total number of files
of M .

1We don’t need a normalized value, i.e., weighting the logical cou-
pling with the number of commits, because we study the evolution
of the logical couplings, thus we compare absolute values of logical
couplings over time instead of analyzing one value only.

177

(a) 2002 (b) 2003 (c) 2004 (d) 2005

Figure 1: Evolution Radars for the backend module from 2002 to 2005.

• Outliers (ol). The files of M having a logical coupling with
Mt much higher than all the others. Those are detected di-
rectly on the view instead of using a formal definition.

Figure 1 shows the four Evolution Radars for the backend mod-
ule (where the arrows highlight the outliers), while the computed
measures and the detected outliers are listed in Table 1.

2002 2003 2004 2005
s 832 928 957 431

in- d 53% 73% 71% 45%
clude ol parsenodes.h parsenodes.h

nodes.h
bufmgr.h

parse-
nodes.h
guc.h

parsenodes.h
nodes.h ex-
ecutor.h

s 81 161 107 95
inter- d 31% 81% 63% 55%
faces ol tabcomplete.c tabcomplete.c none none

s 105 212 183 91
bin d 58% 84% 78% 64%

ol none none none none
s 31 63 70 37

port d 30 % 62% 53% 38%
ol none none none path.c
s 36 52 38 32

pl d 40% 45% 50% 40%
ol pl exec.c pl exec.c none none

Table 1: Results for the backend module.

Conclusions on the Backend Module. As we can see from Fig-
ure 1 and Table 1 the backend module was initially (2002) logically
decoupled from all the other modules but the include one. For this
module the distribution value was relatively low (53%) and the cou-
pling was mainly due to outliers, mostly parsenodes.h. In the
following year the logical coupling with all the other modules in-
creased, for both strength and distribution, implying that the quality
of the design of the backend module decreased as well.

In 2004 we observe that: (i) the dependency with include stayed
stable at high values of strength and distribution, (ii) the logical
coupling with interfaces and pl decreased and (iii)tabcomplete.c
and pl exec.c which were outliers up to this moment were not
outliers any more. We deduce that a refactoring phase was pre-
viously (2003) applied for these two modules (interfaces and pl).
This is one of the reasons of the high logical coupling values in the
previous year.

In the last year the dependencies with all the other modules de-
creased (for both strength and distribution), especially with include,
bin and port. We deduce that in 2004 the backend module was
refactored, since the logical coupling decreased for all the other
modules.
Suggestions for the Backend Module. The files parsenodes.h
and nodes.h of the include module should be further analyzed
and, in case, moved to the backend module. The first was an
outlier from 2002 to 2005 while the second in 2002 and 2005.
They were coupled with backend for a long time and they were
still coupled in the last year. The file path.c of the port module
and executor.h of the include module should also be analyzed.
They were only recently coupled with backend, implying that the
dependencies are due to recent changes. We suggest to analyze
them because an early refactoring is less expensive.

5. CONCLUSION
The Evolution Radar allows us to study the evolution of the de-

pendencies among system modules and to detect the outliers, the
best starting points for the refactoring process. It is also helpful
to understand if the dependencies of the outliers are due to recent
changes or they were coupled with the target modules for many
years. We have shown the results of the application of our ap-
proach on the biggest module of PostgreSQL. We have found can-
didates for reengineering and refactoring phases in the evolution
of the modules. For the other two biggest modules we have found
similar results but we have not presented them for lack of space.

6. REFERENCES
[1] M. D’Ambros and M. Lanza. Software bugs and evolution: A

visual approach to uncover their relationships. In Proceedings
of CSMR 2006 (10th European Conference on Software
Maintenance and Reengineering), pages xxx–xxx. IEEE CS
Press, Mar. 2006.

[2] M. D’Ambros, M. Lanza, and M. Lungu. The evolution radar:
Visualizing integrated logical coupling information. In
Proceedings of MSR 2006 (International Workshop on Mining
Software Repositories), pages xxx–xxx, May 2006.

[3] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. In Proceedings International Conference on
Software Maintenance (ICSM 2003), pages 23–32, Los
Alamitos CA, Sept. 2003. IEEE Computer Society Press.

178

Examining the Evolution of Code Comments
in PostgreSQL

Zhen Ming Jiang and Ahmed E. Hassan
Software Architecture Group (SWAG)

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Canada
{zmjiang, aeehassa}@uwaterloo.ca

ABSTRACT
It is common, especially in large software systems, for developers
to change code without updating its associated comments due to
their unfamiliarity with the code or due to time constraints. This is
a potential problem since outdated comments may confuse or
mislead developers who perform future development. Using data
recovered from CVS, we study the evolution of code comments in
the PostgreSQL project. Our study reveals that over time the
percentage of commented functions remains constant except for
early fluctuation due to the commenting style of a particular active
developer.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Documentation.

General Terms
Human Factors.

Keywords
Software Evolution, Software Maintenance, Code comments.

1. INTRODUCTION
Most of the software development effort is devoted to software
maintenance. Developers spend about half of their time trying to
understand code [1]. Most developers agree that it is not easy to
read other people’s code. A well documented program is easy to
follow and improves the quality of the software [3]. However, in
large software systems, due to unfamiliarity with the system or
due to time constraints or maybe just laziness, developers are
likely to change source code without updating its associated
comments. This is a potential time bomb, since outdated
comments are misleading and cause confusion. We believe it is
worthwhile for managers to monitor the evolution of code
comments over time.

We study source code comments in the PostgreSQL project over
time. Our focus is on the comments associated with functions. We
categorize code comments into two types: Header Comments and
Non-Header Comments. Header Comments are comments before
the declaration of a function; whereas Non-Header Comments are

all other comments residing in the body of a function or trailing
the function. Developers usually use Header Comments to
describe the purpose of a function, and to document its parameters
and interfaces. Non-Header Comments are usually used to
document algorithms and low level design decisions.

Research by Perry et al. has shown that at least 66% of bugs in
large projects are due to interface errors [4]. Uncommented
interfaces or interfaces with outdated comments are likely to cause
bugs. In this paper, we examine whether the percentage of
functions with header comments (FH) drops over time relative to
the functions with non-header comments (FNH). We believe that
a drop may indicate that developers are not updating the interface
documentations.

2. DISCUSSION ABOUT OUR FINDINGS
To perform our study, we used the C-REX extractor [2] to recover
all CVS changes for PostgreSQL from 1996 to 2005. C-REX is
able to track the addition and removal of functions and function
dependencies over time. It also tracks all changes to comments
associated with these functions.

Figure 1: Percentage of FH and FNH Over Time.

Figure 1 shows the percentage of functions with header comments
(FH) and non-header comments (FNH) for every 30 days period.
This Figure reveals that:

1. During the initial two year period (the first 30*25 days), there
is a steady decrease in the percentage of FH and an increase in the
percentage of FNH.

Copyright is held by the author/owner(s).
MSR’06, May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

179

2. After the initial two year period, the percentage of FH and FNH
remain steady, and are around 51% and 52%, respectively.
The first finding is worth investigating since it may be due to the
removal of many FH or the addition of a large amount of FNH
relative to FH. It is also possible that quite a few FH had their
header comments removed. The addition of many FNH is
troublesome since the interfaces for these functions are not
documented and may cause future bugs.

Figure 2: Percentage of Added/Removed/Total Change for FNH
and FH.

To investigate the changes in the percentage of FH and FNH, we
plot the percentage of addition and removal of FH and FNH
during the first two year period in Figure 2. The Figure as well
shows the total change (percentage of added – percentage of
removed) over time. In both subgraphs in the Figure, we note that
the total change line is always above zero (except one case around
13 in the right subgraph). Therefore, we can conclude that more
FNH and FH are added than removed during this two year period.

Figure 3: Ratio of Number of Added FNH over Added FH

We now compare the amount of added FNH against the amount of
added FH. Figure 3 shows the relationship between added FNH
and FH for the two year period. The Figure plots the ratio of
added FNH over added FH for every 30 days. We see that the
ratio always stays above 1. This indicates that there are always
more FNH being added than FH during the initial two year period.

Using the recovered C-REX data which tracks all changes to the
source code and the name of the developers who performed these
changes, we examine closely the spikes in Figure 3. Our
investigation reveals that these spikes are due to a particular
developer who contributed a large number transactions during
these time periods. These transactions added mainly utility
functions to PostgreSQL. The developer has a particular
commenting style, where he appends the name of a function at the
end of the function’s declaration block. For example, in revision
1.13 of the file “./postgres/pgsql/src/backend/utils/adt/geoops.c”,
he adds a small uncommented utility function called “int4 text”.

text * int4_text (int32 arg1)
{
. . .
} /* int4_text () */

If this method were added by other developers, it would probably
become a function with no comments at all; however, in this case
it belongs to the category of FNH functions.

3. CONCLUSION AND FUTUREWORK
Correct and up to date comments aid developers in understanding
the source code; wrong or outdated comments mislead developers
and cause the introduction of bugs. Thus, it is important that
managers monitor code comments over time. In this paper, we
studied comments in PostgreSQL. We discovered that apart from
the initial fluctuation due to the introduction of a new
commenting style; the percentage of functions with header and
non-header comments remains consistent throughout the
development history.

In the future, we plan to investigate the relationship between the
decrease in comment rate and the introduction of bugs.

4. REFERENCES
[1] R. Fjeldstad and W. Hamlen. Application program

maintenance-report to our respondents. In Tutorial On
Software Maintenance, pages 13–27.1983.

[2] A. E. Hassan and R. C. Holt. C-REX: An Evolutionary Code
Extractor for C. May 2004.

[3] D. Parnas. Software aging. In Proceedings of the 16th
International Conference on Software Engineering, pages
279 – 287, Sorrento, Italy, May 1994.

[4] D. E. Perry and W. M. Evangelist. An Empirical Study of
Software Interface Faults—An Update. In Proceedings of the
20th Annual Hawaii International Conference on Systems
Sciences, pages 113–136, Hawaii, USA, Jan. 1987

180

Analyzing OSS Developers’ Working Time
Using Mailing Lists Archives

Masateru Tsunoda
Nara Institute of Science and

Technology
Kansai Science City, 630-0192 Japan

masate-t@is.naist.jp

Akito Monden
Nara Institute of Science and

Technology
Kansai Science City, 630-0192 Japan

akito-m@is.naist.jp

Takeshi Kakimoto
Nara Institute of Science and

Technology
Kansai Science City, 630-0192 Japan

takesi-k@is.naist.jp

Yasutaka Kamei
Nara Institute of Science and

Technology
Kansai Science City, 630-0192 Japan

yasuta-k@is.naist.jp

Ken-ichi Matsumoto
Nara Institute of Science and

Technology
Kansai Science City, 630-0192 Japan

matumoto@is.naist.jp

Categories and Subject Descriptors
K.6.1 [Management of Computing and Information Systems]:
Project and People Management – Staffing;

General Terms: Management

Keywords
Overtime work, workload

1. INTRODUCTION
We chose PostgreSQL, a relational database system for the MSR
mining challenge.
Our research question is in the following mining area:
- Process analysis
Our mining question is “when OSS developers work?” OSS de-
velopers’ working time may be a good indicator to understand the
development style of a project. (For example, if many developers
work in office hour, these might be daily works in a company.)

2. INPUT DATA
We used mailing lists (MLs) archives of PostgreSQL, downloaded
from http://www.postgresql.org/community/lists/. The MLs
mainly consist of user lists and developer lists. We used developer
lists archive since we needed developers’ working time. Table 1
explains details of each ML. Figure 1 shows amounts of messages
of each ML in the developer lists. Amounts of messages were
increasing year by year. The ML of hackers had many more mes-
sages than other MLs. We extracted MLs archives till December
2005. Note that most of committers’ messages were automatically
generated when source code was checked into software configura-
tion management repository.

We picked up “mail sent time” to identify developers’ working
time. Getting mail sent time from the MLs archives consists of the
following two steps: First, we downloaded the MLs archives with

0

5000

10000

15000

20000

1997 1999 2001 2003 2005

committers
hackers
patches
www

Figure 1. Amount of Messages in Each Year

Table 1. Description of Each ML

List Description Archived
from

committers Notification of CVS commits are
sent to this list.

April
2000

hackers
Discussion of current development
issues, problems and bugs, and
proposed new features.

January
1997

patches Patches for new features and bug
fixes should be sent to this list.

June
2000

www
Discussion of development and
coordination of the PostgreSQL
websites.

August
2003

Copyright is held by the author/owner(s).
MSR’06, May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

181

 Irvine1, a web download tool. Then, we extracted mail sent time
from the downloaded archives with a Perl script.
 In our analysis, we mainly focused on the following aspects:
- Mail sent hour
- Days of a week of mail sent date
- Difference in hours and date among ML groups
- Time trend
To see developer workload, we defined the overtime period. Over-
time period includes before 9a.m. and after 5p.m. on weekday,
and all day of weekend. Because each ML has different amount of
messages, we used ratio of messages, defined as amount of mes-
sages divided by total amount, of each ML group.

3. RESULTS AND INTERPRETATIONS
The ratio of messages in each hour is shown in Figure 2. The ML
of hackers was active in the morning. On the contrary, ratio of
committers’ messages in the evening is comparatively higher than
other ML groups. The ratio of messages in each day of a week is
shown in Figure 3. Most developers work on weekday. The ratio
of committers’ messages on weekend is slightly higher than other
ML groups.

1 http://hp.vector.co.jp/authors/VA024591/ (in Japanese)

Ratio of messages sent at overtime period in each year is shown in
Figure 4. The ratio of messages of committers was increasing year
by year while other ML groups did not show clear trends. This
may suggest that many committers are recently required to work at
overtime period by some reasons (e.g. too many patches to in-
spect). Ratio of messages sent on weekend by year is shown in
Figure 5. In spite of the increase of committers’ messages sent at
overtime period, committers’ messages sent on weekend did not
increase. This may suggest that even if committers are willing to
work at overtime period, they do not want to work on weekend.

4. CONCLUSIONS
We analyzed mailing lists archives of PostgreSQL. We focused on
mail sent hour, days of a week of mail sent date, difference in
hours and data among ML groups, and time trend. Our finding is
that the ratio of committers’ messages sent at overtime period was
increasing year by year.

5. ACKNOWLEDGMENTS
This work is supported by the EASE (Empirical Approach to
Software Engineering) project of the Comprehensive Develop-
ment of e-Society Foundation Software program of the Ministry
of Education, Culture, Sports, Science and Technology of Japan.

0%

2%

4%

6%

8%

10%

0 2 4 6 8 10 12 14 16 18 20 22

committers
hackers
patches
www

Figure 2. Ratio of Messages in Each Hour

5%

10%

15%

20%

Sun Mon Tue Wed Thu Fri Sat

committers
hackers
patches
www

Figure 3. Ratio of Messages in Each Day of a Week

40%

50%

60%

70%

20052003200119991997

committers
hackers
patches
www

Figure 4. Ratio of Messages Sent at Overtime Period in Each

Year

10%

20%

30%

40%

20052003200119991997

committers
hackers
patches
www

Figure 5. Ratio of Messages Sent on Weekend in Each Year

182

Where is Bug Resolution Knowledge Stored?

Gerardo Canfora
Research Centre on Software Technology

Department of Engineering - University of Sannio
Viale Traiano - 82100 Benevento, Italy

canfora@unisannio.it

Luigi Cerulo
Research Centre on Software Technology

Department of Engineering - University of Sannio
Viale Traiano - 82100 Benevento, Italy

lcerulo@unisannio.it

ABSTRACT
ArgoUML uses both CVS and Bugzilla to keep track of bug-
fixing activities since 1998. A common practice is to refer-
ence source code changes resolving a bug stored in Bugzilla
by inserting the id number of the bug in the CVS commit
notes. This relationship reveals useful to predict code enti-
ties impacted by a new bug report.

In this paper we analyze ArgoUML software reposito-
ries with a tool, we have implemented, showing what are
Bugzilla fields that better predict such impact relationship,
that is where knowledge about bug resolution is stored.

Categories and Subject Descriptors
H.3.1 [Information storage and retrieval]: Content Analy-
sis and Indexing; D.2.7 [Software Engineering]: Distrib-
ution, Maintenance, and Enhancement

General Terms
Measurement, Experimentation

Keywords
Mining Software Repositories, Impact Analysis

1. OVERVIEW
In [1] we introduced a method to predict the set of source

files impacted by a new bug description submitted to a
bugzilla repository. It takes advantage of the impact re-
lationship extracted from CVS commit notes as suggested
in [3]. In a set of four case studies, we obtained a top 1
precision ranging between 20% and 78%, and a top 30 recall
ranging between 67% and 98%. The method builds, for each
source file, a descriptor consisting of free text extracted from
the set of fixed bugs and CVS commit notes that previously
impacted it. An information retrieval algorithm scores each
source file by measuring the similarity between its descrip-
tors and the new bug description. The hypothesis is that

Copyright is held by the author/owner.
MSR’06, May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

the textual data carried by the bug tracking system during
the bug fixing activity is a good descriptor of the impacted
files to be considered in the impact analysis of future simi-
lar bugs. The similarity between descriptors is computed by
using a probabilistic model that assumes that each term is
associated with a topic, and that a document may be about
the topic, or not [5]. The score of a source file descriptor
d with respect to a bug is measured by using the following
statistic measure about the term occurrences in source file
descriptors:

S(d, bug) =
X

t∈bug

Wd (t)

where W is a weighting function directly proportional to
the term frequency in the source file descriptor, and inversely
proportional to the inverse document frequency [5].

A source file descriptor is represented with any combina-
tion of the following software repository fields: notes, the set
of CVS commit notes; short-descr, the short bug description;
long-descr, the long bug description; comments, the set of
comments submitted by developers during bug resolution.

The model has been implemented in a tool, named Jimpa
[2], that allows user to write a short explanation of a change
and return the set of source files, ranked by their relevance
with bug change description. The tool provides the support
for setting information retrieval properties such as stop word
list, stemmer algorithm, and software repositories fields to
be included or excluded from the indexing process. Figure
1 shows a snapshot of the tool.

Data, provided by the tool, is stored in an intermediate
database; we have used this database to perform the analysis
presented in the following section that shows what are source
file descriptor fields that contain more information about
bug resolution.

2. MINING RESULTS
ArgoUML is an open-source UML modeling tool imple-

mented in Java. Development started in 1998. The first
bugzilla bug has been submitted in January 2000. Cur-
rently there are 2018 fixed bugs, 670 of which (about 33%)
are referenced in CVS commit notes. The total number of
Java source files is 1538. 6% of these files have a reference to
more than 10 different bugs, while 40% of files do not have
any bug reference.

We have performed a change impact prediction with the
method introduced in [1] and with source file descriptors
composed in different ways. In particular, we have used, as

183

Figure 1: Tool snapshot

source file descriptor, each combination of bugzilla fields in
order to put in evidence what is the field whose presence
should give a better prediction performance.

Table 1 shows the top 1 precision and top 100 recall. The
first is the percentage of cases in which the first retrieved
source file is correct, while the second is the percentage of
correct source files covered by the first 100 retrieved source
files. Results show that the presence, in source file descrip-
tor, of bug resolution comments give always the best per-
formance. In particular, the overall best performance is ob-
tained with a descriptor composed only with bug comments
and CVS notes. This leads to consider that short and long
descriptions submitted when the bug is discovered contain
a partial knowledge about bug resolution, while most of the
knowledge is contained in the comments submitted during
the bug resolution process. On average, the presence of bug
comments information gives an improvement of precision of
about 5%.

Precision and recall have been computed using the leave-
one-out assessment technique [4, 6] performed over 670 bugs,
with short descriptions used as queries. For a given bugzilla
bug we have predicted the set of impacted files by using an
index without data regarding that bug. The predicted set
of files has been then compared with the oracle set, that is
the files impacted by that bug, recovered by considering the
presence of the Buzilla id number in the revision comments
of the files [3].

No evidence has been found for the dependence of pre-
diction performance with other information retrieval para-
meters, such as, general English stop word list and Porter
stemmer algorithm.

3. CONCLUDING REMARKS
Text mining of software repositories integrates informa-

tion provided by source code analysis and gives new oppor-
tunities to support the software development process and
to know new aspects about software evolution. It can be
used not only for impact analysis but also, for example, to
aggregate source files in a topic clusters.

Table 1: Performance dependencies
top 1 top 100 CVS bug bug bug

precision recall notes short decr long decr comments

0.232 0.791 × ×
0.212 0.802 × × ×
0.191 0.795 × × × ×
0.163 0.792 × × ×
0.161 0.790 × ×
0.145 0.788 × × ×
0.126 0.754 × ×
0.119 0.701 ×

Quality of text and project maturity are two factors that
strongly impact every approach that takes advantage on free
text stored in software repositories. Sometime CVS com-
ments are used for communication rather that for descrip-
tion purpose and in almost all projects there is an initial
period of transition that generates noise in both CVS and
Bugzilla repositories. This leads to consider that results and
issues obtained by applying data mining algorithms on soft-
ware repositories can suggest new directions in developing
more innovative configuration management and software de-
velopment tools.

The open source community uses other repository for knowl-
edge sharing, such as: mailing lists, newsgroups, and IRC
conversations. They are rich of free text and it should be
interesting to investigate how this information can be used
in conjunction or as an alternative to CVS and Bugzilla.

4. REFERENCES
[1] G. Canfora and L. Cerulo. Impact analysis by mining

software and change request repositories. In METRICS
’05: In Proceedings of the 11th IEEE International
Software Metrics Symposium, Como, Italy, 2005. IEEE
Computer Society.

[2] G. Canfora and L. Cerulo. Jimpa: An eclipse plug-in
for impact analysis. In CSMR ’06: In Proceedings of
the 10th European Conference on Software Maintenance
and Reengineering: Tools Demonstration, Bari, Italy,
2006. IEEE Computer Society.

[3] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In ICSM ’03: In Proceedings of the
19th International Conference on Software
Maintenance, Amsterdam, Netherlands, 2003. IEEE
Computer Society.

[4] K. Fogel and M. Bar. Cross-Validatory Choice and
Assessment of Statistical Predictions (with Discussion),
volume 36. J. the Royal Statistical Soc., 1974.

[5] K. S. Jones, S. Walker, and S. E. Robertson. A
probabilistic model of information retrieval:
development and comparative experiments. Inf.
Process. Manage., 36(6):779–808, 2000.

[6] B. Ribeiro-neto and Baeza-yates. Modern Information
Retrieval. Addison Wesley, 1999.

184

Mining Email Social Networks in Postgres

Christian Bird, Alex Gourley,
Prem Devanbu, Michael Gertz

Dept. of Computer Science, Kemper Hall,
University of California, Davis,

Davis, California Republic.

cabird,devanbu@ucdavis.edu

Anand Swaminathan
Graduate School of Management,

University of California, Davis,
Davis, California Republic.

aswaminathan@ucdavis.edu

ABSTRACT
Open Source Software (OSS) projects provide a unique opportunity
to gather and analyze publicly available historical data. The Post-
gres SQL server, for example, has over seven years of recorded de-
velopment and communication activity. We mined data from both
the source code repository and the mailing list archives to examine
the relationship between communication and development in Post-
gres. Along the way, we had to deal with the difficult challenge of
resolving email aliases. We used a number of social network anal-
ysis measures and statistical techniques to analyze this data. We
present our findings in this paper.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Empirical, Open Source

General Terms
Human Factors, Measurement

Keywords
Open Source, Social Networks

1. INTRODUCTION
We have created a framework for mining publicly available OSS

project data and using the results to answer questions about the
activity in OSS projects. In an effort to test and validate our hy-
potheses based on earlier results from the Apache HTTP Server
project, we have performed the same mining and analysis process
on the Postgres SQL Server project1. We have mined source code
repository activity and used mailing list archives to create a social
network of developers and contributors to Postgres. We are hoping
to answer the following questions:

� Are the distributions of email activity, and the social network
measures (such as in-degree and out-degree) similar in both
projects?

� Is there a correlation between mailing list activity and devel-
opment activity?

� Do the developers have significantly higher status than non-
developers in the email social network?

�http://www.postgresql.org

Copyright is held by the author/owner.
MSR’06, May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

2. DATAMINING
The Postgres project is a stable and widely used piece of open

source software with archives dating back to 1996. In order to mine
social data from mailing list archives, we need various forms of in-
formation about each message sent on the list. Specifically, we
need to know who sent a message, when the message was sent and
if the message was sent in reply to a previous message. Mailing
lists accomplish this “message linking” by assigning each message
a unique message ID. Message � is a reply to message � if there is
an In-Reference-To or In-Reply-To header in �’s headers that has �’s
message ID in it. Unfortunately, although the mailing list archives
for Postgres began in January of 1997, this method of using mes-
sage ID’s did not begin until January, 1998. We therefore restricted
our mining effort to the time period from January, 1998 to February,
2006.

For the period in question, we found that there were 111,020
messages sent on the mailing lists (over 1,100 per month or 35 per
day on average). We were able to parse 110,260 messages (approx-
imately 99.3%). The remaining 760 messages were unparseable
mostly due to malformed headers that lacked the Message-ID header
crucial to our social network reconstruction. However, we believe
that our results would not be significantly affected by the small pro-
portion of unparseable messages

A serious hurdle to data collection was email aliasing. We found
that during this time period, messages were sent to the list from
4,075 unique email addresses. Mailing list participants often use
multiple email addresses, so for our analysis to be a valid, we need
to remove the aliasing from the data. Each message sent on a mail-
ing list has a name and an address of the sender. We have con-
structed an algorithm that uses a number of heuristics (such as ad-
dress similarity, edit distance between names, etc.) and clustering
to detect sets of email aliases that belong to one person. The re-
sults of this process are manually verified and editted for better
results. Although it is not possible to completely remove aliasing
based on name and address heuristics, (it’s possible that the name,
email pair �shiby thomas, sthomas@cise.ufl.edu� is the same per-
son as �david wetzel, dave@turbocat.de�, in which case our algo-
rithm would miss it) we believe that our process is fairly accurate.
Details of the aliasing algorithm are presented in the companion
MSR paper2. After removing aliases we found 3,293 unique “iden-
tities” that we believe each correspond to one person. We used a
similar technique in conjunction with online research (most OSS
projects have a credits file or a developer info page3) to match CVS
accounts to mailing list identities.

�http://wwwcsif.cs.ucdavis.edu/˜bird/papers/msr06.pdf
�The email addresses of many Postgres developers can be found at
http://www.postgresql.org/developer/bios

185

changes srcChanges docChanges outdegree indegree betweenness mean min max

changes 1 0.974 0.936 0.768 0.782 0.765 3247 0 35883

srcChanges 0.974 1 0.885 0.769 0.785 0.769 2016 0 23345

docChanges 0.936 0.885 1 0.747 0.759 0.767 1231 0 12538

outdegree 0.768 0.769 0.747 1 0.992 0.948 0.0115 0 0.0679

indegree 0.782 0.785 0.759 0.992 1 0.956 0.0092 0.0001 0.0506

betweenness 0.765 0.769 0.767 0.948 0.956 1 .0246 0 0.2634

Figure 1: Cross-correlation table, (using Spearman’s rank correlation) showing the relationship between the total number of changes,
the changes to source, changes to documents, relative in-degree, relative out-degree, and betweenness. Average, min, and max are
also shown. �=25

In addition to mining mailing list data, we also gathered data
from the source code repository of Postgres (which uses CVS as its
version control mechanism). During the period of interest, 26 CVS
accounts were used. We were able to match email addresses to all
but one of these. According to the developers4, the pgsql account
is used only to tag and package releases, and is not represented on
the mailing list so we do not include it in our analysis. We tracked
development by counting the number of changes to files over time
and found 83,359 changes made to 4,108 files over the course of
the time studied.

3. RESULTS
We constructed a social network based on the messages that were

sent and replied to on the mailing lists. Three commonly accepted
social network metrics were run on the resulting network on a per
node basis; in-degree, out-degree, and betweeness. In general, de-
velopers had higher levels of all three metrics by at least an order
of magnitude over non-developers. This indicates that developers
hold positions of high status in the social network of contributors by
multiple measures. A Student’s �-test shows a significant statistical
difference in the in-degree, out-degree and betweenness values for
the population of developers and the population of non-developers.
Figure 2 shows the social network of highly active Postgres mailing
list participants (ties represent at least 150 messages between par-
ticipants). The two most central participants, Bruce Momjian and
Tom Lane, are also the most active CVS committers. The majority
of the other participants in this network are also CVS committers.
There are, however, nodes in this network that are not CVS com-
mitters and not all committers are in the network.

In addition, Figure 1 shows high levels of correlation between
the social network measures and CVS activity. Similar to the re-
sults of our study of the Apache HTTP Server project, The social
network metrics are higly correlated with source file changes. Un-
like Apache, however, document file changes correlate to an equal
degree. This may be due to the lower number of CVS developers
(25 versus 78) and the fact that in this project, many developers
work on both source code and documentation. Another possibil-
ity may be the number of document translations and how they are
dealt with. We plan to mine other OSS projects to investigate this
phenomenon futher.

We also examined the distribution of people with in-degree, out-
degree, number of sent messages and number of replies. Consis-
tent with data from the Apache project, each distribution exhibits
a power-law character. This gives us confidence in our mining
methodology and analysis as social processes tend to be charac-
terized by power-laws.

�Marc Fournier and Tom Lane both explained this in responses to
our inquiries regarding this account

alvaro herrera

tom lane

andrew dunstan

bruce momjian

christopher kings-lynne

greg stark

hannu krosing

hiroshi inoue

jan wieck

joe conway

josh berkus

marc g. fournier

mikheev_ vadim

neil conway

oleg bartunov

peter eisentraut

philip warner

rod taylor

simon riggs

tatsuo ishii

thomas lockhart

zeugswetter andreas iz5

don baccus

jim c. nasby

lamar owen

larry rosenman

Figure 2: Social network of highly active Postgres mailing list
participants

4. CONCLUSION
After mining and analyzing mailing list and source code reposi-

tory data for the Postgres project we found that the distributions of
email activity and social network measures were similar to those
found in the Apache project. Our results indicate that develop-
ers hold higher levels of status in the social network than non-
developers. We also found high correlations between various so-
cial network status metrics and source code development. This is
consistent with our findings from the Apache project and gives us
confidence in our hypotheses and methods. The discrepancy in cor-
relation of document changes with social network status between
projects indicates an area that requires further investigation

There is a significant body of related work, which is omitted
from this summary for brevity. We refer the reader to our compan-
ion paper, “Mining Email Social Networks” accepted to MSR 2006
(located at http://wwwcsif.cs.ucdavis.edu/˜bird/papers/msr06.pdf)
for details.

186

	MSR06org
	p1
	p3
	p10
	p14
	p18
	INTRODUCTION
	COUPLING AND COHESION METRICS
	PROPOSED NEW METRICS
	Cohesion
	Coupling

	AN EXPERIMENTAL COMPARISON
	RESULTS
	Linear Regression
	Spearman Rank Correlation

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

	p22
	p26
	p33
	p40
	p47
	p54
	p58
	p65
	p72
	Introduction
	Tracking Lines
	What are Annotation Graphs?
	How to Read GNU's diff
	How to Compute Annotation Graphs
	How to Recognize Large Modifications

	Annotating Lines
	Life Cycle of Lines
	Finding Related Lines
	Related Work
	Conclusion
	References

	p76
	p80
	p87
	Introduction
	Logic Information Systems
	Formal Framework
	A LIS File System --- LISFS
	Applications

	Software Applications of LIS
	Indexing Software Components
	Browsing Source Trees and Source Files
	Analysis of Program Traces

	Software Component Indexing
	A Logic for Classifying Java Methods
	Implementation
	Experiments

	Conclusion
	REFERENCES -9pt

	p94
	p98
	p105
	p112
	p119
	p126
	p133
	p137
	p144
	p151
	p155
	p159
	p163
	p165
	Method
	Results and Evaluation
	References

	p167
	p169
	Introduction
	Input Data and Tools
	Mining Usage Patterns
	Mining Cross-Cutting Concerns
	Conclusion
	REFERENCES -9pt

	p171
	p173
	p175
	p177
	p179
	p181
	p183
	p185

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

